g77 - GNU project Fortran 77 compiler
Only the most useful options are listed here; see below for the remainder.
All gcc and g77 options are accepted both by g77 and by gcc (as well as any other drivers built at the same time, such as g++), since adding g77 to the gcc distribution enables acceptance of g77 options by all of the relevant drivers.
In some cases, options have positive and negative forms; the negative form of -ffoo would be -fno-foo. This manual documents only one of these two forms, whichever one is not the default.
Compilation can involve as many as four stages: preprocessing, code generation (often what is really meant by the term ``compilation''), assembly, and linking, always in that order. The first three stages apply to an individual source file, and end by producing an object file; linking combines all the object files (those newly compiled, and those specified as input) into an executable file.
For any given input file, the file name suffix determines what kind of program is contained in the file---that is, the language in which the program is written is generally indicated by the suffix. Suffixes specific to GNU Fortran are listed below.
Such source code cannot contain any preprocessor directives, such as "#include", "#define", "#if", and so on.
You can force .f files to be preprocessed by cpp by using -x f77-cpp-input.
Note that preprocessing is not extended to the contents of files included by the "INCLUDE" directive---the "#include" preprocessor directive must be used instead.
UNIX users typically use the file.f and file.F nomenclature. Users of other operating systems, especially those that cannot distinguish upper-case letters from lower-case letters in their file names, typically use the file.for and file.fpp nomenclature.
Use of the preprocessor cpp allows use of C-like constructs such as "#define" and "#include", but can lead to unexpected, even mistaken, results due to Fortran's source file format. It is recommended that use of the C preprocessor be limited to "#include" and, in conjunction with "#define", only "#if" and related directives, thus avoiding in-line macro expansion entirely. This recommendation applies especially when using the traditional fixed source form. With free source form, fewer unexpected transformations are likely to happen, but use of constructs such as Hollerith and character constants can nevertheless present problems, especially when these are continued across multiple source lines. These problems result, primarily, from differences between the way such constants are interpreted by the C preprocessor and by a Fortran compiler.
Another example of a problem that results from using the C preprocessor is that a Fortran comment line that happens to contain any characters ``interesting'' to the C preprocessor, such as a backslash at the end of the line, is not recognized by the preprocessor as a comment line, so instead of being passed through ``raw'', the line is edited according to the rules for the preprocessor. For example, the backslash at the end of the line is removed, along with the subsequent newline, resulting in the next line being effectively commented out---unfortunate if that line is a non-comment line of important code!
Note: The -traditional and -undef flags are supplied to cpp by default, to help avoid unpleasant surprises.
This means that ANSI C preprocessor features (such as the # operator) aren't available, and only variables in the C reserved namespace (generally, names with a leading underscore) are liable to substitution by C predefines. Thus, if you want to do system-specific tests, use, for example, #ifdef __linux__ rather than #ifdef linux. Use the -v option to see exactly how the preprocessor is invoked.
Unfortunately, the -traditional flag will not avoid an error from anything that cpp sees as an unterminated C comment, such as:
C Some Fortran compilers accept /* as starting C an inline comment.
The following options that affect overall processing are recognized by the g77 and gcc commands in a GNU Fortran installation:
This option is supplied automatically when -v or --verbose is specified as a command-line option for g77 or gcc and when the resulting commands compile Fortran source files.
In GCC 3.1, this is changed back to the behavior gcc displays for .c files.
Set up whatever gcc options are to apply to Fortran compilations, and avoid running internal consistency checks that might take some time.
This option is supplied automatically when compiling Fortran code via the g77 or gcc command. The description of this option is provided so that users seeing it in the output of, say, g77 -v understand why it is there.
Also, developers who run "f771" directly might want to specify it by hand to get the same defaults as they would running "f771" via g77 or gcc However, such developers should, after linking a new "f771" executable, invoke it without this option once, e.g. via "./f771 -quiet < /dev/null", to ensure that they have not introduced any internal inconsistencies (such as in the table of intrinsics) before proceeding---g77 will crash with a diagnostic if it detects an inconsistency.
Specify that certain ``ugly'' constructs are to be quietly accepted. Same as:
-fugly-args -fugly-assign -fugly-assumed -fugly-comma -fugly-complex -fugly-init -fugly-logint
These constructs are considered inappropriate to use in new or well-maintained portable Fortran code, but widely used in old code.
-fno-ugly-args -fno-ugly-assign -fno-ugly-assumed -fno-ugly-comma -fno-ugly-complex -fno-ugly-init -fno-ugly-logint
The -fno-f66 option is the inverse of -ff66. As such, it is the same as -fno-onetrip -fno-ugly-assumed.
The meaning of this option is likely to be refined as future versions of g77 provide more compatibility with other existing and obsolete Fortran implementations.
The meaning of this option is likely to be refined as future versions of g77 provide more compatibility with other existing and obsolete Fortran implementations.
The meaning of this option is likely to be refined as future versions of g77 provide more compatibility with other existing and obsolete Fortran implementations.
This option controls whether certain Fortran 90 constructs are recognized. (Other Fortran 90 constructs might or might not be recognized depending on other options such as -fvxt, -ff90-intrinsics-enable, and the current level of support for Fortran 90.)
The default is -fno-vxt. -fvxt specifies that the VXT Fortran interpretations for those constructs are to be chosen.
For example, with -fbackslash in effect, A\nB specifies three characters, with the second one being newline. With -fno-backslash, it specifies four characters, A, \, n, and B.
Note that g77 implements a fairly general form of backslash processing that is incompatible with the narrower forms supported by some other compilers. For example, 'A\003B' is a three-character string in g77 whereas other compilers that support backslash might not support the three-octal-digit form, and thus treat that string as longer than three characters.
For example, DIMENSION X(1) is treated as if it had read DIMENSION X(*).
For example, CALL FOO(,) is treated as CALL FOO(%VAL(0), %VAL(0)). That is, two null arguments are specified by the procedure call when -fugly-comma is in force. And F = FUNC() is treated as F = FUNC(%VAL(0)).
The default behavior, -fno-ugly-comma, is to ignore a single trailing comma in an argument list. So, by default, CALL FOO(X,) is treated exactly the same as CALL FOO(X).
The -ff90 option controls the interpretation of this construct.
For example, DATA I/'F'/, CHRVAR/65/, J/4HABCD/ is disallowed by -fno-ugly-init.
For example, automatic conversion between "INTEGER" and "LOGICAL" is enabled, for many contexts, via this option.
ANSI FORTRAN 77 and more recent versions of the Fortran standard specify that the body of an iterative "DO" loop is not executed if the number of iterations calculated from the parameters of the loop is less than 1. (For example, DO 10 I = 1, 0.) Such a loop is called a zero-trip loop.
Prior to ANSI FORTRAN 77, many compilers implemented "DO" loops such that the body of a loop would be executed at least once, even if the iteration count was zero. Fortran code written assuming this behavior is said to require one-trip loops. For example, some code written to the FORTRAN 66 standard expects this behavior from its "DO" loops, although that standard did not specify this behavior.
The -fonetrip option specifies that the source file(s) being compiled require one-trip loops.
This option affects only those loops specified by the (iterative) "DO" statement and by implied-"DO" lists in I/O statements. Loops specified by implied-"DO" lists in "DATA" and specification (non-executable) statements are not affected.
You can test for yourself whether a particular compiler treats the prefix form as "INTEGER(KIND=1)" or typeless by running the following program:
EQUIVALENCE (I, R) R = Z'ABCD1234' J = Z'ABCD1234' IF (J .EQ. I) PRINT *, 'Prefix form is TYPELESS' IF (J .NE. I) PRINT *, 'Prefix form is INTEGER' END
Reports indicate that many compilers process this form as "INTEGER(KIND=1)", though a few as typeless, and at least one based on a command-line option specifying some kind of compatibility.
Popular values for n include 72 (the standard and the default), 80 (card image), and 132 (corresponds to ``extended-source'' options in some popular compilers). n may be none, meaning that the entire line is meaningful and that continued character constants never have implicit spaces appended to them to fill out the line. -ffixed-line-length-0 means the same thing as -ffixed-line-length-none.
You can request many specific warnings with options beginning -W, for example -Wimplicit to request warnings on implicit declarations. Each of these specific warning options also has a negative form beginning -Wno- to turn off warnings; for example, -Wno-implicit. This manual lists only one of the two forms, whichever is not the default.
These options control the amount and kinds of warnings produced by GNU Fortran:
Valid ANSI FORTRAN 77 programs should compile properly with or without this option. However, without this option, certain GNU extensions and traditional Fortran features are supported as well. With this option, many of them are rejected.
Some users try to use -pedantic to check programs for strict ANSI conformance. They soon find that it does not do quite what they want---it finds some non-ANSI practices, but not all. However, improvements to g77 in this area are welcome.
Also inhibit warnings about inconsistent invocations and/or definitions of global procedures (function and subroutines). Such inconsistencies include different numbers of arguments and different types of arguments.
These warnings are possible only in optimizing compilation, because they require data-flow information that is computed only when optimizing. If you don't specify -O, you simply won't get these warnings.
These warnings occur only for variables that are candidates for register allocation. Therefore, they do not occur for a variable whose address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for arrays, even when they are in registers.
Note that there might be no warning about a variable that is used only to compute a value that itself is never used, because such computations may be deleted by data-flow analysis before the warnings are printed.
These warnings are made optional because GNU Fortran is not smart enough to see all the reasons why the code might be correct despite appearing to have an error. Here is one example of how this can happen:
SUBROUTINE DISPAT(J) IF (J.EQ.1) I=1 IF (J.EQ.2) I=4 IF (J.EQ.3) I=5 CALL FOO(I) END
If the value of "J" is always 1, 2 or 3, then "I" is always initialized, but GNU Fortran doesn't know this. Here is another common case:
SUBROUTINE MAYBE(FLAG) LOGICAL FLAG IF (FLAG) VALUE = 9.4 ... IF (FLAG) PRINT *, VALUE END
This has no bug because "VALUE" is used only if it is set.
The remaining -W... options are not implied by -Wall because they warn about constructions that we consider reasonable to use, on occasion, in clean programs.
A revealing example is the constant expression 2**-2*1., which g77 evaluates to .25, while others might evaluate it to 0., the difference resulting from the way precedence affects type promotion.
(The -fpedantic option also warns about expressions having two arithmetic operators in a row.)
An example of an expression producing different results in a surprising way is -I*S, where I holds the value -2147483648 and S holds 0.5. On many systems, negating I results in the same value, not a positive number, because it is already the lower bound of what an "INTEGER(KIND=1)" variable can hold. So, the expression evaluates to a positive number, while the ``expected'' interpretation, (-I)*S, would evaluate to a negative number.
Even cases such as -I*J produce warnings, even though, in most configurations and situations, there is no computational difference between the results of the two interpretations---the purpose of this warning is to warn about differing interpretations and encourage a better style of coding, not to identify only those places where bugs might exist in the user's code.
``Extra warnings'' are issued for:
Some of these have no effect when compiling programs written in Fortran:
A sample debugging session looks like this (note the use of the breakpoint):
$ cat gdb.f PROGRAM PROG DIMENSION A(10) DATA A /1.,2.,3.,4.,5.,6.,7.,8.,9.,10./ A(5) = 4. PRINT*,A END $ g77 -g -O gdb.f $ gdb a.out ... (gdb) break MAIN__ Breakpoint 1 at 0x8048e96: file gdb.f, line 4. (gdb) run Starting program: /home/toon/g77-bugs/./a.out Breakpoint 1, MAIN__ () at gdb.f:4 4 A(5) = 4. Current language: auto; currently fortran (gdb) print a(5) $1 = 5 (gdb) step 5 PRINT*,A (gdb) print a(5) $2 = 4 ...
One could also add the setting of the breakpoint and the first run command to the file .gdbinit in the current directory, to simplify the debugging session.
The following flags have particular applicability when compiling Fortran programs:
Noticeably improves performance of g77 programs making heavy use of "REAL(KIND=2)" ("DOUBLE PRECISION") data on some systems. In particular, systems using Pentium, Pentium Pro, 586, and 686 implementations of the i386 architecture execute programs faster when "REAL(KIND=2)" ("DOUBLE PRECISION") data are aligned on 64-bit boundaries in memory.
This option can, at least, make benchmark results more consistent across various system configurations, versions of the program, and data sets.
Note: The warning in the gcc documentation about this option does not apply, generally speaking, to Fortran code compiled by g77
Also also note: The negative form of -malign-double is -mno-align-double, not -benign-double.
This option is effective when the floating-point unit is set to work in IEEE 854 `extended precision'---as it typically is on x86 and m68k GNU systems---rather than IEEE 754 double precision. -ffloat-store tries to remove the extra precision by spilling data from floating-point registers into memory and this typically involves a big performance hit. However, it doesn't affect intermediate results, so that it is only partially effective. `Excess precision' is avoided in code like:
a = b + c d = a * e
but not in code like:
d = (b + c) * e
For another, potentially better, way of controlling the precision, see Floating-point precision.
This option should never be turned on by any -O option since it can result in incorrect output for programs which depend on an exact implementation of IEEE or ISO rules/specifications.
The default is -fno-finite-math-only.
Also, no `loop discovery'[1] is done, so only loops written with "DO" benefit from loop optimizations, including---but not limited to---unrolling. Loops written with "IF" and "GOTO" are not currently recognized as such. This option unrolls only iterative "DO" loops, not "DO WHILE" loops.
-fmove-all-movables and -freduce-all-givs will enable loop optimization to move all loop-invariant index computations in nested loops over multi-rank array dummy arguments out of these loops.
-frerun-loop-opt will move offset calculations resulting from the fact that Fortran arrays by default have a lower bound of 1 out of the loops.
These three options are intended to be removed someday, once loop optimization is sufficiently advanced to perform all those transformations without help from these options.
Some of these options also affect how g77 processes the "INCLUDE" directive. Since this directive is processed even when preprocessing is not requested, it is not described in this section.
However, the "INCLUDE" directive does not apply preprocessing to the contents of the included file itself.
Therefore, any file that contains preprocessor directives (such as "#include", "#define", and "#if") must be included via the "#include" directive, not via the "INCLUDE" directive. Therefore, any file containing preprocessor directives, if included, is necessarily included by a file that itself contains preprocessor directives.
Some of these options also affect how g77 searches for files specified via the "INCLUDE" directive, although files included by that directive are not, themselves, preprocessed. These options are:
Note that -Idir must be specified without any spaces between -I and the directory name---that is, -Ifoo/bar is valid, but -I foo/bar is rejected by the g77 compiler (though the preprocessor supports the latter form). Also note that the general behavior of -I and "INCLUDE" is pretty much the same as of -I with "#include" in the cpp preprocessor, with regard to looking for header.gcc files and other such things.
Most of them have both positive and negative forms; the negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed---the one which is not the default. You can figure out the other form by either removing no- or adding it.
Since there is a run-time penalty for initialization of variables that are not given the "SAVE" attribute, it might be a good idea to also use -fno-automatic with -finit-local-zero.
The f2c calling conventions require functions that return type "REAL(KIND=1)" to actually return the C type "double", and functions that return type "COMPLEX" to return the values via an extra argument in the calling sequence that points to where to store the return value. Under the GNU calling conventions, such functions simply return their results as they would in GNU C---"REAL(KIND=1)" functions return the C type "float", and "COMPLEX" functions return the GNU C type "complex" (or its "struct" equivalent).
This does not affect the generation of code that interfaces with the "libg2c" library.
However, because the "libg2c" library uses f2c calling conventions, g77 rejects attempts to pass intrinsics implemented by routines in this library as actual arguments when -fno-f2c is used, to avoid bugs when they are actually called by code expecting the GNU calling conventions to work.
For example, INTRINSIC ABS;CALL FOO(ABS) is rejected when -fno-f2c is in force. (Future versions of the g77 run-time library might offer routines that provide GNU-callable versions of the routines that implement the f2c intrinsics that may be passed as actual arguments, so that valid programs need not be rejected when -fno-f2c is used.)
Caution: If -fno-f2c is used when compiling any source file used in a program, it must be used when compiling all Fortran source files used in that program.
Currently it is not valid to specify -fno-f2c-library. This option is provided so users can specify it in shell scripts that build programs and libraries that require the "libf2c" library, even when being compiled by future versions of g77 that might otherwise default to generating code for an incompatible library.
With -funderscoring in effect, g77 appends two underscores to names with underscores and one underscore to external names with no underscores. (g77 also appends two underscores to internal names with underscores to avoid naming collisions with external names. The -fno-second-underscore option disables appending of the second underscore in all cases.)
This is done to ensure compatibility with code produced by many UNIX Fortran compilers, including f2c which perform the same transformations.
Use of -fno-underscoring is not recommended unless you are experimenting with issues such as integration of (GNU) Fortran into existing system environments (vis-a-vis existing libraries, tools, and so on).
For example, with -funderscoring, and assuming other defaults like -fcase-lower and that j() and max_count() are external functions while my_var and lvar are local variables, a statement like
I = J() + MAX_COUNT (MY_VAR, LVAR)
is implemented as something akin to:
i = j_() + max_count__(&my_var__, &lvar);
With -fno-underscoring, the same statement is implemented as:
i = j() + max_count(&my_var, &lvar);
Use of -fno-underscoring allows direct specification of user-defined names while debugging and when interfacing g77 code with other languages.
Note that just because the names match does not mean that the interface implemented by g77 for an external name matches the interface implemented by some other language for that same name. That is, getting code produced by g77 to link to code produced by some other compiler using this or any other method can be only a small part of the overall solution---getting the code generated by both compilers to agree on issues other than naming can require significant effort, and, unlike naming disagreements, linkers normally cannot detect disagreements in these other areas.
Also, note that with -fno-underscoring, the lack of appended underscores introduces the very real possibility that a user-defined external name will conflict with a name in a system library, which could make finding unresolved-reference bugs quite difficult in some cases---they might occur at program run time, and show up only as buggy behavior at run time.
In future versions of g77 we hope to improve naming and linking issues so that debugging always involves using the names as they appear in the source, even if the names as seen by the linker are mangled to prevent accidental linking between procedures with incompatible interfaces.
This option has no effect if -fno-underscoring is in effect.
Otherwise, with this option, an external name such as MAX_COUNT is implemented as a reference to the link-time external symbol max_count_, instead of max_count__.
As of version 0.5.18, g77 normally treats "DATA" and other statements that are used to specify initial values of zero for variables and arrays as if no values were actually specified, in the sense that no diagnostics regarding multiple initializations are produced.
This is done to speed up compiling of programs that initialize large arrays to zeros.
Use -fzeros to revert to the simpler, slower behavior that can catch multiple initializations by keeping track of all initializations, zero or otherwise.
Caution: Future versions of g77 might disregard this option (and its negative form, the default) or interpret it somewhat differently. The interpretation changes will affect only non-standard programs; standard-conforming programs should not be affected.
(gcc had some bugs in its back-end support for "complex" arithmetic, due primarily to the support not being completed as of version 2.8.1 and "egcs" 1.1.2.)
Use -femulate-complex if you suspect code-generation bugs, or experience compiler crashes, that might result from g77 using the "COMPLEX" support in the gcc back end. If using that option fixes the bugs or crashes you are seeing, that indicates a likely g77 bugs (though, all compiler crashes are considered bugs), so, please report it. (Note that the known bugs, now believed fixed, produced compiler crashes rather than causing the generation of incorrect code.)
Use of this option should not affect how Fortran code compiled by g77 works in terms of its interfaces to other code, e.g. that compiled by f2c
As of GCC version 3.0, this option is not necessary anymore.
Caution: Future versions of g77 might ignore both forms of this option.
These options specify to what degree aliasing (overlap) is permitted between arguments (passed as pointers) and "COMMON" (external, or public) storage.
The default for Fortran code, as mandated by the FORTRAN 77 and Fortran 90 standards, is -fargument-noalias-global. The default for code written in the C language family is -fargument-alias.
Note that, on some systems, compiling with -fforce-addr in effect can produce more optimal code when the default aliasing options are in effect (and when optimization is enabled).
Further, this option disables such inlining, to avoid compiler crashes resulting from incorrect code that would otherwise be diagnosed.
As such, this option might be quite useful when compiling existing, ``working'' code that happens to have a few bugs that do not generally show themselves, but which g77 diagnoses.
Use of this option therefore has the effect of instructing g77 to behave more like it did up through version 0.5.19.1, when it paid little or no attention to disagreements between program units about a procedure's type and argument information, and when it performed no inlining of procedures (except statement functions).
Without this option, g77 defaults to performing the potentially inlining procedures as it started doing in version 0.5.20, but as of version 0.5.21, it also diagnoses disagreements that might cause such inlining to crash the compiler as (fatal) errors, and warns about similar disagreements that are currently believed to not likely to result in the compiler later crashing or producing incorrect code.
Note: This option is not supported. It is intended for use only by g77 developers, to evaluate code-generation issues. It might be removed at any time.
The current implementation uses the "libf2c" library routine "s_rnge" to print the diagnostic.
However, whereas f2c generates a single check per reference for a multi-dimensional array, of the computed offset against the valid offset range (0 through the size of the array), g77 generates a single check per subscript expression. This catches some cases of potential bugs that f2c does not, such as references to below the beginning of an assumed-size array.
g77 also generates checks for "CHARACTER" substring references, something f2c currently does not do.
Use the new -ffortran-bounds-check option to specify bounds-checking for only the Fortran code you are compiling, not necessarily for code written in other languages.
Note: To provide more detailed information on the offending subscript, g77 provides the "libg2c" run-time library routine "s_rnge" with somewhat differently-formatted information. Here's a sample diagnostic:
Subscript out of range on file line 4, procedure rnge.f/bf. Attempt to access the -6-th element of variable b[subscript-2-of-2]. Aborted
The above message indicates that the offending source line is line 4 of the file rnge.f, within the program unit (or statement function) named bf. The offended array is named b. The offended array dimension is the second for a two-dimensional array, and the offending, computed subscript expression was -6.
For a "CHARACTER" substring reference, the second line has this appearance:
Attempt to access the 11-th element of variable a[start-substring].
This indicates that the offended "CHARACTER" variable or array is named a, the offended substring position is the starting (leftmost) position, and the offending substring expression is 11.
(Though the verbage of "s_rnge" is not ideal for the purpose of the g77 compiler, the above information should provide adequate diagnostic abilities to it users.)
Some of these do not work when compiling programs written in Fortran:
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being ``GNU General Public License'' and ``Funding Free Software'', the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the gfdl(7) man page.
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development.
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |