Switch - A switch statement for Perl
use Switch;
switch ($val) {
case 1 { print "number 1" } case "a" { print "string a" } case [1..10,42] { print "number in list" } case (@array) { print "number in list" } case /\w+/ { print "pattern" } case qr/\w+/ { print "pattern" } case (%hash) { print "entry in hash" } case (\%hash) { print "entry in hash" } case (\&sub) { print "arg to subroutine" } else { print "previous case not true" } }
In seeking to devise a ``Swiss Army'' case mechanism suitable for Perl, it is useful to generalize this notion of distributed conditional testing as far as possible. Specifically, the concept of ``matching'' between the switch value and the various case values need not be restricted to numeric (or string or referential) equality, as it is in other languages. Indeed, as Table 1 illustrates, Perl offers at least eighteen different ways in which two values could generate a match.
Table 1: Matching a switch value ($s) with a case value ($c)
Switch Case Type of Match Implied Matching Code Value Value ====== ===== ===================== =============
number same numeric or referential match if $s == $c; or ref equality
object method result of method call match if $s->$c(); ref name match if defined $s->$c(); or ref
other other string equality match if $s eq $c; non-ref non-ref scalar scalar
string regexp pattern match match if $s =~ /$c/;
array scalar array entry existence match if 0<=$c && $c<@$s; ref array entry definition match if defined $s->[$c]; array entry truth match if $s->[$c];
array array array intersection match if intersects(@$s, @$c); ref ref (apply this table to all pairs of elements $s->[$i] and $c->[$j])
array regexp array grep match if grep /$c/, @$s; ref
hash scalar hash entry existence match if exists $s->{$c}; ref hash entry definition match if defined $s->{$c}; hash entry truth match if $s->{$c};
hash regexp hash grep match if grep /$c/, keys %$s; ref
sub scalar return value defn match if defined $s->($c); ref return value truth match if $s->($c);
sub array return value defn match if defined $s->(@$c); ref ref return value truth match if $s->(@$c);
In reality, Table 1 covers 31 alternatives, because only the equality and intersection tests are commutative; in all other cases, the roles of the $s and $c variables could be reversed to produce a different test. For example, instead of testing a single hash for the existence of a series of keys ("match if exists $s->{$c}"), one could test for the existence of a single key in a series of hashes ("match if exists $c->{$s}").
As perltodo observes, a Perl case mechanism must support all these ``ways to do it''.
The module augments the standard Perl syntax with two new control statements: "switch" and "case". The "switch" statement takes a single scalar argument of any type, specified in parentheses. "switch" stores this value as the current switch value in a (localized) control variable. The value is followed by a block which may contain one or more Perl statements (including the "case" statement described below). The block is unconditionally executed once the switch value has been cached.
A "case" statement takes a single scalar argument (in mandatory parentheses if it's a variable; otherwise the parens are optional) and selects the appropriate type of matching between that argument and the current switch value. The type of matching used is determined by the respective types of the switch value and the "case" argument, as specified in Table 1. If the match is successful, the mandatory block associated with the "case" statement is executed.
In most other respects, the "case" statement is semantically identical to an "if" statement. For example, it can be followed by an "else" clause, and can be used as a postfix statement qualifier.
However, when a "case" block has been executed control is automatically transferred to the statement after the immediately enclosing "switch" block, rather than to the next statement within the block. In other words, the success of any "case" statement prevents other cases in the same scope from executing. But see ``Allowing fall-through'' below.
Together these two new statements provide a fully generalized case mechanism:
use Switch;
# AND LATER...
%special = ( woohoo => 1, d'oh => 1 );
while (<>) { switch ($_) {
case (%special) { print "homer\n"; } # if $special{$_} case /a-z/i { print "alpha\n"; } # if $_ =~ /a-z/i case [1..9] { print "small num\n"; } # if $_ in [1..9]
case { $_[0] >= 10 } { # if $_ >= 10 my $age = <>; switch (sub{ $_[0] < $age } ) {
case 20 { print "teens\n"; } # if 20 < $age case 30 { print "twenties\n"; } # if 30 < $age else { print "history\n"; } } }
print "must be punctuation\n" case /\W/; # if $_ ~= /\W/ }
Note that "switch"es can be nested within "case" (or any other) blocks, and a series of "case" statements can try different types of matches --- hash membership, pattern match, array intersection, simple equality, etc. --- against the same switch value.
The use of intersection tests against an array reference is particularly useful for aggregating integral cases:
sub classify_digit { switch ($_[0]) { case 0 { return 'zero' } case [2,4,6,8] { return 'even' } case [1,3,4,7,9] { return 'odd' } case /[A-F]/i { return 'hex' } } }
If a "case" block executes an untargeted "next", control is immediately transferred to the statement after the "case" statement (i.e. usually another case), rather than out of the surrounding "switch" block.
For example:
switch ($val) { case 1 { handle_num_1(); next } # and try next case... case "1" { handle_str_1(); next } # and try next case... case [0..9] { handle_num_any(); } # and we're done case /\d/ { handle_dig_any(); next } # and try next case... case /.*/ { handle_str_any(); next } # and try next case... }
If $val held the number 1, the above "switch" block would call the first three "handle_..." subroutines, jumping to the next case test each time it encountered a "next". After the thrid "case" block was executed, control would jump to the end of the enclosing "switch" block.
On the other hand, if $val held 10, then only the last two "handle_..." subroutines would be called.
Note that this mechanism allows the notion of conditional fall-through. For example:
switch ($val) { case [0..9] { handle_num_any(); next if $val < 7; } case /\d/ { handle_dig_any(); } }
If an untargeted "last" statement is executed in a case block, this immediately transfers control out of the enclosing "switch" block (in other words, there is an implicit "last" at the end of each normal "case" block). Thus the previous example could also have been written:
switch ($val) { case [0..9] { handle_num_any(); last if $val >= 7; next; } case /\d/ { handle_dig_any(); } }
use Switch 'fallthrough';
switch ($val) { case 1 { handle_num_1(); } case "1" { handle_str_1(); } case [0..9] { handle_num_any(); last } case /\d/ { handle_dig_any(); } case /.*/ { handle_str_any(); } }
Note the explicit use of a "last" to preserve the non-fall-through behaviour of the third case.
This future syntax is also (largely) available via the Switch.pm module, by importing it with the argument "Perl6". For example:
use Switch 'Perl6';
given ($val) { when 1 { handle_num_1(); } when ($str1) { handle_str_1(); } when [0..9] { handle_num_any(); last } when /\d/ { handle_dig_any(); } when /.*/ { handle_str_any(); } default { handle anything else; } }
Note that scalars still need to be parenthesized, since they would be ambiguous in Perl 5.
Note too that you can mix and match both syntaxes by importing the module with:
use Switch 'Perl5', 'Perl6';
sub beverage { switch (shift) {
case sub { $_[0] < 10 } { return 'milk' } case sub { $_[0] < 20 } { return 'coke' } case sub { $_[0] < 30 } { return 'beer' } case sub { $_[0] < 40 } { return 'wine' } case sub { $_[0] < 50 } { return 'malt' } case sub { $_[0] < 60 } { return 'Moet' } else { return 'milk' } } }
The need to specify each condition as a subroutine block is tiresome. To overcome this, when importing Switch.pm, a special ``placeholder'' subroutine named "__" [sic] may also be imported. This subroutine converts (almost) any expression in which it appears to a reference to a higher-order function. That is, the expression:
use Switch '__';
__ < 2 + __
is equivalent to:
sub { $_[0] < 2 + $_[1] }
With "__", the previous ugly case statements can be rewritten:
case __ < 10 { return 'milk' } case __ < 20 { return 'coke' } case __ < 30 { return 'beer' } case __ < 40 { return 'wine' } case __ < 50 { return 'malt' } case __ < 60 { return 'Moet' } else { return 'milk' }
The "__" subroutine makes extensive use of operator overloading to perform its magic. All operations involving __ are overloaded to produce an anonymous subroutine that implements a lazy version of the original operation.
The only problem is that operator overloading does not allow the boolean operators "&&" and "||" to be overloaded. So a case statement like this:
case 0 <= __ && __ < 10 { return 'digit' }
doesn't act as expected, because when it is executed, it constructs two higher order subroutines and then treats the two resulting references as arguments to "&&":
sub { 0 <= $_[0] } && sub { $_[0] < 10 }
This boolean expression is inevitably true, since both references are non-false. Fortunately, the overloaded 'bool' operator catches this situation and flags it as a error.
Due to the way source filters work in Perl, you can't use Switch inside an string "eval".
If your source file is longer then 1 million characters and you have a switch statement that crosses the 1 million (or 2 million, etc.) character boundary you will get mysterious errors. The workaround is to use smaller source files.
Copyright (c) 1997-2003, Damian Conway. All Rights Reserved. This module is free software. It may be used, redistributed and/or modified under the same terms as Perl itself.
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |