The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

EVP_EncryptInit (3)
  • >> EVP_EncryptInit (3) ( Solaris man: Библиотечные вызовы )
  • EVP_EncryptInit (3) ( Разные man: Библиотечные вызовы )
  • 
    
    

    NAME

         EVP_EncryptInit, EVP_EncryptUpdate, EVP_EncryptFinal,
         EVP_DecryptInit, EVP_DecryptUpdate, EVP_DecryptFinal,
         EVP_CipherInit, EVP_CipherUpdate, EVP_CipherFinal,
         EVP_CIPHER_CTX_set_key_length, EVP_CIPHER_CTX_ctrl,
         EVP_CIPHER_CTX_cleanup, EVP_get_cipherbyname,
         EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid,
         EVP_CIPHER_block_size, EVP_CIPHER_key_length,
         EVP_CIPHER_iv_length, EVP_CIPHER_flags, EVP_CIPHER_mode,
         EVP_CIPHER_type, EVP_CIPHER_CTX_cipher, EVP_CIPHER_CTX_nid,
         EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
         EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
         EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type,
         EVP_CIPHER_CTX_flags, EVP_CIPHER_CTX_mode,
         EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param - EVP
         cipher routines
    
    
    

    SYNOPSIS

          #include <openssl/evp.h>
    
          int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                  unsigned char *key, unsigned char *iv);
          int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
                  int *outl, unsigned char *in, int inl);
          int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
                  int *outl);
    
          int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                  unsigned char *key, unsigned char *iv);
          int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
                  int *outl, unsigned char *in, int inl);
          int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
                  int *outl);
    
          int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                  unsigned char *key, unsigned char *iv, int enc);
          int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
                  int *outl, unsigned char *in, int inl);
          int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
                  int *outl);
    
          int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
          int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
          int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a);
    
          const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
          #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
          #define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))
    
    
    
          #define EVP_CIPHER_nid(e)              ((e)->nid)
          #define EVP_CIPHER_block_size(e)       ((e)->block_size)
          #define EVP_CIPHER_key_length(e)       ((e)->key_len)
          #define EVP_CIPHER_iv_length(e)                ((e)->iv_len)
          #define EVP_CIPHER_flags(e)            ((e)->flags)
          #define EVP_CIPHER_mode(e)             ((e)->flags) & EVP_CIPH_MODE)
          int EVP_CIPHER_type(const EVP_CIPHER *ctx);
    
          #define EVP_CIPHER_CTX_cipher(e)       ((e)->cipher)
          #define EVP_CIPHER_CTX_nid(e)          ((e)->cipher->nid)
          #define EVP_CIPHER_CTX_block_size(e)   ((e)->cipher->block_size)
          #define EVP_CIPHER_CTX_key_length(e)   ((e)->key_len)
          #define EVP_CIPHER_CTX_iv_length(e)    ((e)->cipher->iv_len)
          #define EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data)
          #define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d))
          #define EVP_CIPHER_CTX_type(c)         EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c))
          #define EVP_CIPHER_CTX_flags(e)                ((e)->cipher->flags)
          #define EVP_CIPHER_CTX_mode(e)         ((e)->cipher->flags & EVP_CIPH_MODE)
    
          int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
          int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
    
    
    
    

    DESCRIPTION

         The EVP cipher routines are a high level interface to
         certain symmetric ciphers.
    
         EVP_EncryptInit() initializes a cipher context ctx for
         encryption with cipher type. type is normally supplied by a
         function such as EVP_des_cbc() . key is the symmetric key to
         use and iv is the IV to use (if necessary), the actual
         number of bytes used for the key and IV depends on the
         cipher. It is possible to set all parameters to NULL except
         type in an initial call and supply the remaining parameters
         in subsequent calls, all of which have type set to NULL.
         This is done when the default cipher parameters are not
         appropriate.
    
         EVP_EncryptUpdate() encrypts inl bytes from the buffer in
         and writes the encrypted version to out. This function can
         be called multiple times to encrypt successive blocks of
         data. The amount of data written depends on the block
         alignment of the encrypted data:  as a result the amount of
         data written may be anything from zero bytes to (inl +
         cipher_block_size - 1) so outl should contain sufficient
         room.  The actual number of bytes written is placed in outl.
    
         EVP_EncryptFinal() encrypts the "final" data, that is any
         data that remains in a partial block. It uses standard block
         padding (aka PKCS padding). The encrypted final data is
         written to out which should have sufficient space for one
         cipher block. The number of bytes written is placed in outl.
         After this function is called the encryption operation is
         finished and no further calls to EVP_EncryptUpdate() should
         be made.
    
         EVP_DecryptInit(), EVP_DecryptUpdate() and
         EVP_DecryptFinal() are the corresponding decryption
         operations. EVP_DecryptFinal() will return an error code if
         the final block is not correctly formatted. The parameters
         and restrictions are identical to the encryption operations
         except that the decrypted data buffer out passed to
         EVP_DecryptUpdate() should have sufficient room for (inl +
         cipher_block_size) bytes unless the cipher block size is 1
         in which case inl bytes is sufficient.
    
         EVP_CipherInit(), EVP_CipherUpdate() and EVP_CipherFinal()
         are functions that can be used for decryption or encryption.
         The operation performed depends on the value of the enc
         parameter. It should be set to 1 for encryption, 0 for
         decryption and -1 to leave the value unchanged (the actual
         value of 'enc' being supplied in a previous call).
    
         EVP_CIPHER_CTX_cleanup() clears all information from a
         cipher context.  It should be called after all operations
         using a cipher are complete so sensitive information does
         not remain in memory.
    
         EVP_get_cipherbyname(), EVP_get_cipherbynid() and
         EVP_get_cipherbyobj() return an EVP_CIPHER structure when
         passed a cipher name, a NID or an ASN1_OBJECT structure.
    
         EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of
         a cipher when passed an EVP_CIPHER or EVP_CIPHER_CTX
         structure.  The actual NID value is an internal value which
         may not have a corresponding OBJECT IDENTIFIER.
    
         EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length()
         return the key length of a cipher when passed an EVP_CIPHER
         or EVP_CIPHER_CTX structure. The constant EVP_MAX_KEY_LENGTH
         is the maximum key length for all ciphers. Note: although
         EVP_CIPHER_key_length() is fixed for a given cipher, the
         value of EVP_CIPHER_CTX_key_length() may be different for
         variable key length ciphers.
    
         EVP_CIPHER_CTX_set_key_length() sets the key length of the
         cipher ctx.  If the cipher is a fixed length cipher then
         attempting to set the key length to any value other than the
         fixed value is an error.
    
         EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return
         the IV length of a cipher when passed an EVP_CIPHER or
         EVP_CIPHER_CTX.  It will return zero if the cipher does not
         use an IV.  The constant EVP_MAX_IV_LENGTH is the maximum IV
         length for all ciphers.
    
         EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size()
         return the block size of a cipher when passed an EVP_CIPHER
         or EVP_CIPHER_CTX structure. The constant EVP_MAX_IV_LENGTH
         is also the maximum block length for all ciphers.
    
         EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type
         of the passed cipher or context. This "type" is the actual
         NID of the cipher OBJECT IDENTIFIER as such it ignores the
         cipher parameters and 40 bit RC2 and 128 bit RC2 have the
         same NID. If the cipher does not have an object identifier
         or does not have ASN1 support this function will return
         NID_undef.
    
         EVP_CIPHER_CTX_cipher() returns the EVP_CIPHER structure
         when passed an EVP_CIPHER_CTX structure.
    
         EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block
         cipher mode:  EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE,
         EVP_CIPH_CFB_MODE or EVP_CIPH_OFB_MODE. If the cipher is a
         stream cipher then EVP_CIPH_STREAM_CIPHER is returned.
    
         EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier
         "parameter" based on the passed cipher. This will typically
         include any parameters and an IV. The cipher IV (if any)
         must be set when this call is made. This call should be made
         before the cipher is actually "used" (before any
         EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example).
         This function may fail if the cipher does not have any ASN1
         support.
    
         EVP_CIPHER_asn1_to_param() sets the cipher parameters based
         on an ASN1 AlgorithmIdentifier "parameter". The precise
         effect depends on the cipher In the case of RC2, for
         example, it will set the IV and effective key length.  This
         function should be called after the base cipher type is set
         but before the key is set. For example EVP_CipherInit() will
         be called with the IV and key set to NULL,
         EVP_CIPHER_asn1_to_param() will be called and finally
         EVP_CipherInit() again with all parameters except the key
         set to NULL. It is possible for this function to fail if the
         cipher does not have any ASN1 support or the parameters
         cannot be set (for example the RC2 effective key length is
         not supported.
    
         EVP_CIPHER_CTX_ctrl() allows various cipher specific
         parameters to be determined and set. Currently only the RC2
         effective key length and the number of rounds of RC5 can be
         set.
    
    
    
    

    RETURN VALUES

         EVP_EncryptInit(), EVP_EncryptUpdate() and
         EVP_EncryptFinal() return 1 for success and 0 for failure.
    
         EVP_DecryptInit() and EVP_DecryptUpdate() return 1 for
         success and 0 for failure.  EVP_DecryptFinal() returns 0 if
         the decrypt failed or 1 for success.
    
         EVP_CipherInit() and EVP_CipherUpdate() return 1 for success
         and 0 for failure.  EVP_CipherFinal() returns 1 for a
         decryption failure or 1 for success.
    
         EVP_CIPHER_CTX_cleanup() returns 1 for success and 0 for
         failure.
    
         EVP_get_cipherbyname(), EVP_get_cipherbynid() and
         EVP_get_cipherbyobj() return an EVP_CIPHER structure or NULL
         on error.
    
         EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID.
    
         EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size()
         return the block size.
    
         EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length()
         return the key length.
    
         EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return
         the IV length or zero if the cipher does not use an IV.
    
         EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID
         of the cipher's OBJECT IDENTIFIER or NID_undef if it has no
         defined OBJECT IDENTIFIER.
    
         EVP_CIPHER_CTX_cipher() returns an EVP_CIPHER structure.
    
         EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param()
         return 1 for success or zero for failure.
    
    
    

    CIPHER LISTING

         All algorithms have a fixed key length unless otherwise
         stated.
    
         EVP_enc_null()
             Null cipher: does nothing.
    
    EVP_des_ofb(void)
         EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void),
             DES in CBC, ECB, CFB and OFB modes respectively.
    
    EVP_des_ede_cfb(void)
         EVP_des_ede_cbc(void), EVP_des_ede(), EVP_des_ede_ofb(void),
             Two key triple DES in CBC, ECB, CFB and OFB modes
             respectively.
    
    EVP_des_ede3_cfb(void)
         EVP_des_ede3_cbc(void), EVP_des_ede3(), EVP_des_ede3_ofb(void),
             Three key triple DES in CBC, ECB, CFB and OFB modes
             respectively.
    
         EVP_desx_cbc(void)
             DESX algorithm in CBC mode.
    
         EVP_rc4(void)
             RC4 stream cipher. This is a variable key length cipher
             with default key length 128 bits.
    
         EVP_rc4_40(void)
             RC4 stream cipher with 40 bit key length. This is
             obsolete and new code should use EVP_rc4() and the
             EVP_CIPHER_CTX_set_key_length() function.
    
    EVP_idea_ofb(void), EVP_idea_cbc(void)
         EVP_idea_cbc() EVP_idea_ecb(void), EVP_idea_cfb(void),
             IDEA encryption algorithm in CBC, ECB, CFB and OFB modes
             respectively.
    
    EVP_rc2_ofb(void)
         EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void),
             RC2 encryption algorithm in CBC, ECB, CFB and OFB modes
             respectively. This is a variable key length cipher with
             an additional parameter called "effective key bits" or
             "effective key length".  By default both are set to 128
             bits.
    
         EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void)
             RC2 algorithm in CBC mode with a default key length and
             effective key length of 40 and 64 bits.  These are
             obsolete and new code should use EVP_rc2_cbc(),
             EVP_CIPHER_CTX_set_key_length() and
             EVP_CIPHER_CTX_ctrl() to set the key length and
             effective key length.
    
    EVP_bf_ofb(void);
         EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void),
             Blowfish encryption algorithm in CBC, ECB, CFB and OFB
             modes respectively. This is a variable key length
             cipher.
    
    EVP_cast5_ofb(void)
         EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void),
             CAST encryption algorithm in CBC, ECB, CFB and OFB modes
             respectively. This is a variable key length cipher.
    
    EVP_rc5_32_12_16_cfb(void), EVP_rc5_32_12_16_ofb(void)
         EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void),
             RC5 encryption algorithm in CBC, ECB, CFB and OFB modes
             respectively. This is a variable key length cipher with
             an additional "number of rounds" parameter. By default
             the key length is set to 128 bits and 12 rounds.
    
    
    

    NOTES

         Where possible the EVP interface to symmetric ciphers should
         be used in preference to the low level interfaces. This is
         because the code then becomes transparent to the cipher used
         and much more flexible.
    
         PKCS padding works by adding n padding bytes of value n to
         make the total length of the encrypted data a multiple of
         the block size. Padding is always added so if the data is
         already a multiple of the block size n will equal the block
         size. For example if the block size is 8 and 11 bytes are to
         be encrypted then 5 padding bytes of value 5 will be added.
    
         When decrypting the final block is checked to see if it has
         the correct form.
    
         Although the decryption operation can produce an error, it
         is not a strong test that the input data or key is correct.
         A random block has better than 1 in 256 chance of being of
         the correct format and problems with the input data earlier
         on will not produce a final decrypt error.
    
         The functions EVP_EncryptInit(), EVP_EncryptUpdate(),
         EVP_EncryptFinal(), EVP_DecryptInit(), EVP_DecryptUpdate(),
         EVP_CipherInit() and EVP_CipherUpdate() and
         EVP_CIPHER_CTX_cleanup() did not return errors in OpenSSL
         version 0.9.5a or earlier. Software only versions of
         encryption algorithms will never return error codes for
         these functions, unless there is a programming error (for
         example and attempt to set the key before the cipher is set
         in EVP_EncryptInit() ).
    
    
    

    BUGS

         For RC5 the number of rounds can currently only be set to 8,
         12 or 16. This is a limitation of the current RC5 code
         rather than the EVP interface.
    
         It should be possible to disable PKCS padding: currently it
         isn't.
    
         EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the
         internal ciphers with default key lengths. If custom ciphers
         exceed these values the results are unpredictable. This is
         because it has become standard practice to define a generic
         key as a fixed unsigned char array containing
         EVP_MAX_KEY_LENGTH bytes.
    
         The ASN1 code is incomplete (and sometimes inaccurate) it
         has only been tested for certain common S/MIME ciphers (RC2,
         DES, triple DES) in CBC mode.
    
    
    

    EXAMPLES

         Get the number of rounds used in RC5:
    
          int nrounds;
          EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &i);
    
         Get the RC2 effective key length:
    
          int key_bits;
          EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC2_KEY_BITS, 0, &i);
    
         Set the number of rounds used in RC5:
    
          int nrounds;
          EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC5_ROUNDS, i, NULL);
    
         Set the number of rounds used in RC2:
    
          int nrounds;
          EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, i, NULL);
    
    
    
    

    SEE ALSO

         evp(3)
    
    
    

    HISTORY

         EVP_CipherFinal, EVP_CIPHER_CTX_set_key_length,
         EVP_CIPHER_CTX_ctrl, EVP_CIPHER_CTX_cleanup,
         EVP_get_cipherbyname, EVP_get_cipherbynid,
         EVP_get_cipherbyobj, EVP_CIPHER_nid, EVP_CIPHER_block_size,
         EVP_CIPHER_key_length, EVP_CIPHER_iv_length,
         EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type,
         EVP_CIPHER_CTX_cipher, EVP_CIPHER_CTX_nid,
         EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
         EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
         EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type,
         EVP_CIPHER_CTX_flags, EVP_CIPHER_CTX_mode,
         EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param - EVP
         cipher routines"
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру