The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

cgeql2 (3)
  • >> cgeql2 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         cgeql2 - compute a QL factorization of  a  complex  m  by  n
         matrix A
    
    SYNOPSIS
         SUBROUTINE CGEQL2( M, N, A, LDA, TAU, WORK, INFO )
    
         INTEGER INFO, LDA, M, N
    
         COMPLEX A( LDA, * ), TAU( * ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void cgeql2(int m, int n,  complex  *ca,  int  lda,  complex
                   *tau, int *info) ;
    
    PURPOSE
         CGEQL2 computes a QL factorization  of  a  complex  m  by  n
         matrix A:  A = Q * L.
    
    
    ARGUMENTS
         M         (input) INTEGER
                   The number of rows of the matrix A.  M >= 0.
    
         N         (input) INTEGER
                   The number of columns of the matrix A.  N >= 0.
    
         A         (input/output) COMPLEX array, dimension (LDA,N)
                   On entry, the m by n matrix A.  On exit, if  m  >=
                   n,   the  lower  triangle  of  the  subarray  A(m-
                   n+1:m,1:n) contains the n by  n  lower  triangular
                   matrix L; if m <= n, the elements on and below the
                   (n-m)-th superdiagonal contain the m  by  n  lower
                   trapezoidal matrix L; the remaining elements, with
                   the array TAU, represent the unitary matrix Q as a
                   product  of  elementary  reflectors  (see  Further
                   Details).  LDA      (input)  INTEGER  The  leading
                   dimension of the array A.  LDA >= max(1,M).
    
         TAU       (output) COMPLEX array, dimension (min(M,N))
                   The scalar factors of  the  elementary  reflectors
                   (see Further Details).
    
         WORK      (workspace) COMPLEX array, dimension (N)
    
         INFO      (output) INTEGER
                   = 0: successful exit
                   < 0: if INFO = -i, the i-th argument had an  ille-
                   gal value
    
    FURTHER DETAILS
         The matrix Q is  represented  as  a  product  of  elementary
         reflectors
    
            Q = H(k) . . . H(2) H(1), where k = min(m,n).
    
         Each H(i) has the form
    
            H(i) = I - tau * v * v'
    
         where tau is a complex scalar, and v  is  a  complex  vector
         with  v(m-k+i+1:m)  =  0  and  v(m-k+i) = 1; v(1:m-k+i-1) is
         stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру