The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

cggbal (3)
  • >> cggbal (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         cggbal - balance a pair of general complex matrices (A,B)
    
    SYNOPSIS
         SUBROUTINE CGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
                   RSCALE, WORK, INFO )
    
         CHARACTER JOB
    
         INTEGER IHI, ILO, INFO, LDA, LDB, N
    
         REAL LSCALE( * ), RSCALE( * ), WORK( * )
    
         COMPLEX A( LDA, * ), B( LDB, * )
    
    
    
         #include <sunperf.h>
    
         void cggbal(char job, int n, complex *ca, int  lda,  complex
                   *cb,  int  ldb, int *ilo, int *ihi, float *lscale,
                   float *rscale, int *info) ;
    
    PURPOSE
         CGGBAL balances a pair of general  complex  matrices  (A,B).
         This  involves,  first,  permuting  A  and  B  by similarity
         transformations to isolate eigenvalues in  the  first  1  to
         ILO$-$1  and  last  IHI+1 to N elements on the diagonal; and
         second, applying a  diagonal  similarity  transformation  to
         rows  and columns ILO to IHI to make the rows and columns as
         close in norm as possible. Both steps are optional.
    
         Balancing may reduce the 1-norm of the matrices, and improve
         the accuracy of the computed eigenvalues and/or eigenvectors
         in the generalized eigenvalue problem A*x = lambda*B*x.
    
    
    ARGUMENTS
         JOB       (input) CHARACTER*1
                   Specifies the operations to be performed on A  and
                   B:
                   = 'N':  none:  simply  set  ILO  =  1,  IHI  =  N,
                   LSCALE(I) = 1.0 and RSCALE(I) = 1.0 for i=1,...,N;
                   = 'P':  permute only;
                   = 'S':  scale only;
                   = 'B':  both permute and scale.
    
         N         (input) INTEGER
                   The order of the matrices A and B.  N >= 0.
    
         A         (input/output) COMPLEX array, dimension (LDA,N)
                   On entry, the input  matrix  A.   On  exit,  A  is
                   overwritten by the balanced matrix.  If JOB = 'N',
                   A is not referenced.
    
         LDA       (input) INTEGER
                   The leading dimension  of  the  array  A.  LDA  >=
                   max(1,N).
    
         B         (input/output) COMPLEX array, dimension (LDB,N)
                   On entry, the input  matrix  B.   On  exit,  B  is
                   overwritten by the balanced matrix.  If JOB = 'N',
                   B is not referenced.
    
         LDB       (input) INTEGER
                   The leading dimension  of  the  array  B.  LDB  >=
                   max(1,N).
    
         ILO       (output) INTEGER
                   IHI     (output) INTEGER ILO and IHI  are  set  to
                   integers such that on exit A(i,j) = 0 and B(i,j) =
                   0 if i > j and j = 1,...,ILO-1 or i = IHI+1,...,N.
                   If JOB = 'N' or 'S', ILO = 1 and IHI = N.
    
         LSCALE    (output) REAL array, dimension (N)
                   Details of the permutations  and  scaling  factors
                   applied  to  the left side of A and B.  If P(j) is
                   the index of the row interchanged with row j,  and
                   D(j)  is the scaling factor applied to row j, then
                   LSCALE(j) = P(j)    for J  =  1,...,ILO-1  =  D(j)
                   for J = ILO,...,IHI = P(j)    for J = IHI+1,...,N.
                   The order in which the interchanges are made is  N
                   to IHI+1, then 1 to ILO-1.
    
         RSCALE    (output) REAL array, dimension (N)
                   Details of the permutations  and  scaling  factors
                   applied  to the right side of A and B.  If P(j) is
                   the index of the column interchanged  with  column
                   j,  and  D(j)  is  the  scaling  factor applied to
                   column  j,  then  RSCALE(j)  =  P(j)     for  J  =
                   1,...,ILO-1  =  D(j)    for J = ILO,...,IHI = P(j)
                   for J =  IHI+1,...,N.   The  order  in  which  the
                   interchanges  are  made  is  N to IHI+1, then 1 to
                   ILO-1.
    
         WORK      (workspace) REAL array, dimension (6*N)
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
    
    FURTHER DETAILS
         See R.C. WARD, Balancing the generalized eigenvalue problem,
                        SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру