NAME cpbco - compute a Cholesky factorization and condition number of a symmetric positive definite matrix A in banded storage. If the condition number is not needed then xPBFA is slightly faster. It is typical to follow a call to xPBCO with a call to xPBSL to solve Ax = b or to xPBDI to compute the determinant of A. SYNOPSIS SUBROUTINE DPBCO (DA, LDA, N, NDIAG, DRCOND, DWORK, INFO) SUBROUTINE SPBCO (SA, LDA, N, NDIAG, SRCOND, SWORK, INFO) SUBROUTINE ZPBCO (ZA, LDA, N, NDIAG, DRCOND, ZWORK, INFO) SUBROUTINE CPBCO (CA, LDA, N, NDIAG, SRCOND, CWORK, INFO) #include <sunperf.h> void dpbco(double *abd, int lda, int n, int m, double *drcond, int *info) ; void spbco(float *abd, int lda, int n, int m, float *srcond, int *info) ; void zpbco(doublecomplex *abd, int lda, int n, int m, double *drcond, int *info) ; void cpbco(complex *abd, int lda, int n, int m, float *srcond, int *info) ; ARGUMENTS xA On entry, the upper triangle of the matrix A. On exit, a Cholesky factorization of the matrix A. LDA Leading dimension of the array A as specified in a dimension or type statement. LDA >= NDIAG + 1. N Order of the matrix A. N * 0. NDIAG Number of diagonals. N-1 >= NDIAG >= 0 but if N = 0 then NDIAG = 0. xRCOND On exit, an estimate of the reciprocal condition number of A. 0.0 <= RCOND <= 1.0. As the value of RCOND gets smaller, operations with A such as solving Ax = b may become less stable. If RCOND satisfies RCOND + 1.0 = 1.0 then A may be singular to working precision. xWORK Scratch array with a dimension of N. INFO On exit: INFO = 0 Subroutine completed normally. INFO * 0 Returns a value k if the leading minor of order k is not positive definite. SAMPLE PROGRAM PROGRAM TEST IMPLICIT NONE C INTEGER LDA, N, NDIAG PARAMETER (N = 4) PARAMETER (NDIAG = 1) PARAMETER (LDA = NDIAG + 1) C DOUBLE PRECISION A(LDA,N), B(N), RCOND, WORK(N) INTEGER ICOL, INFO, IROW C EXTERNAL DPBCO, DPBSL C C Initialize the array A to store in banded storage mode C the matrix A shown below. Initialize the array B to C store the vector B shown below. C C 2 -1 0 0 60 C A = -1 2 -1 0 b = 60 C 0 -1 2 -1 60 C 0 0 -1 2 60 C DATA A / 8D8, 2.0D0, -1.0D0, 2.0D0, -1.0D0, 2.0D0, -1.0D0, 2.0D0 / DATA B / 4*6.0D1 / C PRINT 1000 PRINT 1010, A(2,1), A(1,2) PRINT 1010, A(3,1), A(2,2), A(1,3) PRINT 1020, A(3,2), A(2,3), A(1,4) PRINT 1030, A(3,3), A(2,4) PRINT 1040 PRINT 1010, ((A(IROW,ICOL), ICOL = 1, N), IROW = 1, LDA) PRINT 1050 PRINT 1060, B CALL DPBCO (A, LDA, N, NDIAG, RCOND, WORK, INFO) IF (INFO .EQ. 0) THEN IF ((RCOND + 1.0D0) .EQ. 1.0D0) THEN PRINT 1100 END IF CALL DPBSL (A, LDA, N, NDIAG, B) PRINT 1070, RCOND PRINT 1080 PRINT 1060, B ELSE PRINT 1090 END IF C 1000 FORMAT (1X, 'A in full form:') 1010 FORMAT (4(3X, F5.1)) 1020 FORMAT (8X, 3(3X, F5.1)) 1030 FORMAT (16X, 3(3X, F5.1)) 1040 FORMAT (/1X, 'A in banded form: (* in unused entries)') 1050 FORMAT (/1X, 'b:') 1060 FORMAT (3X, F5.1) 1070 FORMAT (/1X, 'Reciprocal condition number of A:', F5.1) 1080 FORMAT (/1X, 'A**(-1) * b:') 1090 FORMAT (/1X, 'A is not positive definite.') 1100 FORMAT (1X, 'A may be singular to working precision.') C END SAMPLE OUTPUT A in full form: 2.0 -1.0 -1.0 2.0 -1.0 -1.0 2.0 -1.0 -1.0 2.0 A in banded form: (* in unused entries) ***** -1.0 -1.0 -1.0 2.0 2.0 2.0 2.0 b: 60.0 60.0 60.0 60.0 Reciprocal condition number of A: 0.1 A**(-1) * b: 120.0 180.0 180.0 120.0
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |