NAME cpoco - compute a Cholesky factorization and condition number of a symmetric positive definite matrix A. If the condition number is not needed then xPOFA is slightly fas- ter. It is typical to follow a call to xPOCO with a call to xPOSL to solve Ax = b or to xPODI to compute the determinant and inverse of A. SYNOPSIS SUBROUTINE DPOCO (DA, LDA, N, DRCOND, DWORK, INFO) SUBROUTINE SPOCO (SA, LDA, N, SRCOND, SWORK, INFO) SUBROUTINE ZPOCO (ZA, LDA, N, DRCOND, ZWORK, INFO) SUBROUTINE CPOCO (CA, LDA, N, SRCOND, CWORK, INFO) #include <sunperf.h> void dpoco(double *da, int lda, int n, double *drcond, int *info) ; void spoco(float *sa, int lda, int n, float *srcond, int *info) ; void zpoco(doublecomplex *za, int lda, int n, double *drcond, int *info) ; void cpoco(complex *ca, int lda, int n, float *srcond, int *info) ; ARGUMENTS xA On entry, the upper triangle of the matrix A. On exit, a Cholesky factorization of the matrix A. The strict lower triangle of A is not referenced. LDA Leading dimension of the array A as specified in a dimension or type statement. LDA >= max(1,N). N Order of the matrix A. N >= 0. xRCOND On exit, an estimate of the reciprocal condition number of A. 0.0 <= RCOND <= 1.0. As the value of RCOND gets smaller, operations with A such as solving Ax = b may become less stable. If RCOND satisfies RCOND + 1.0 = 1.0 then A may be singular to working precision. xWORK Scratch array with a dimension of N. INFO On exit: INFO = 0 Subroutine completed normally. INFO * 0 Returns a value k if the leading minor of order k is not positive definite. SAMPLE PROGRAM PROGRAM TEST IMPLICIT NONE C INTEGER LDA, N PARAMETER (N = 4) PARAMETER (LDA = N) C DOUBLE PRECISION A(LDA,N), B(N), RCOND, WORK(N) INTEGER ICOL, INFO, IROW C EXTERNAL DPOCO, DPOSL C C Initialize the array A to store in symmetric storage mode C the matrix A shown below. Initialize the array B to store C the vector B shown below. C C 2 -1 0 0 40 C A = -1 2 -1 0 b = 30 C 0 -1 2 -1 20 C 0 0 -1 2 10 C DATA A / 2.0D0, 3*8D8, -1.0D0, 2.0D0, 2*8D8, 0.0D0, -1.0D0, $ 2.0D0, -1.0D0, 0.0D0, 0.0D0, -1.0D0, 2.0D0 / DATA B / 4.0D0, 3.0D0, 2.0D0, 1.0D0 / C PRINT 1000 DO 100, IROW = 1, N PRINT 1010, (A(ICOL,IROW), ICOL = 1, IROW), $ (A(IROW,ICOL), ICOL = IROW + 1, N) 100 CONTINUE PRINT 1020 PRINT 1010, ((A(IROW,ICOL), ICOL = 1, N), IROW = 1, N) PRINT 1030 PRINT 1040, B CALL DPOCO (A, LDA, N, RCOND, WORK, INFO) IF (INFO .EQ. 0) THEN IF ((RCOND + 1.0D0) .EQ. 1.0D0) THEN PRINT 1070 END IF CALL DPOSL (A, LDA, N, B) PRINT 1050 PRINT 1040, B PRINT 1060, RCOND ELSE PRINT 1080 END IF C 1000 FORMAT (1X, 'A in full form:') 1010 FORMAT (4(3X, F7.3)) 1020 FORMAT (/1X, 'A in symmetric form: (* in unused entries)') 1030 FORMAT (/1X, 'b:') 1040 FORMAT (3X, F7.3) 1050 FORMAT (/1X, 'A**(-1) * b:') 1060 FORMAT (/1X, 'Reciprocal condition number of A:', F5.1) 1070 FORMAT (1X, 'A may be singular to working precision.') 1080 FORMAT (1X, 'A is not positive definite.') C END SAMPLE OUTPUT A in full form: 2.000 -1.000 0.000 0.000 -1.000 2.000 -1.000 0.000 0.000 -1.000 2.000 -1.000 0.000 0.000 -1.000 2.000 A in symmetric form: (* in unused entries) 2.000 -1.000 0.000 0.000 ******* 2.000 -1.000 0.000 ******* ******* 2.000 -1.000 ******* ******* -1.000 2.000 b: 4.000 3.000 2.000 1.000 A**(-1) * b: 6.000 8.000 7.000 4.000 Reciprocal condition number of A: 0.1
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |