The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

ctgevc (3)
  • >> ctgevc (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         ctgevc - compute some or all of the right and/or  left  gen-
         eralized  eigenvectors of a pair of complex upper triangular
         matrices (A,B)
    
    SYNOPSIS
         SUBROUTINE CTGEVC( SIDE, HOWMNY, SELECT, N, A, LDA, B,  LDB,
                   VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO )
    
         CHARACTER HOWMNY, SIDE
    
         INTEGER INFO, LDA, LDB, LDVL, LDVR, M, MM, N
    
         LOGICAL SELECT( * )
    
         REAL RWORK( * )
    
         COMPLEX A( LDA, * ), B( LDB, * ), VL( LDVL, * ), VR( LDVR, *
                   ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void ctgevc(char side, char howmny, int *select, int n, com-
                   plex  *ca,  int lda, complex *cb, int ldb, complex
                   *vl, int ldvl, complex *vr, int ldvr, int mm,  int
                   *m, int *info) ;
    
    PURPOSE
         CTGEVC computes some or all of the right  and/or  left  gen-
         eralized  eigenvectors of a pair of complex upper triangular
         matrices (A,B).
    
         The right generalized eigenvector x and the left generalized
         eigenvector y of (A,B) corresponding to a generalized eigen-
         value w are defined by:
    
                 (A - wB) * x = 0  and  y**H * (A - wB) = 0
    
         where y**H denotes the conjugate tranpose of y.
    
         If an eigenvalue w is determined by zero  diagonal  elements
         of  both  A  and  B,  a  unit  vector  is  returned  as  the
         corresponding eigenvector.
    
         If all eigenvectors are requested, the  routine  may  either
         return the matrices X and/or Y of right or left eigenvectors
         of (A,B), or the products Z*X and/or Q*Y, where Z and Q  are
         input unitary matrices.  If (A,B) was obtained from the gen-
         eralized Schur factorization of an original pair of matrices
            (A0,B0) = (Q*A*Z**H,Q*B*Z**H),
    
         then Z*X and Q*Y are the matrices of right or left eigenvec-
         tors of A.
    
    
    ARGUMENTS
         SIDE      (input) CHARACTER*1
                   = 'R': compute right eigenvectors only;
                   = 'L': compute left eigenvectors only;
                   = 'B': compute both right and left eigenvectors.
    
         HOWMNY    (input) CHARACTER*1
                   = 'A': compute all right and/or left eigenvectors;
                   = 'B': compute all right and/or left eigenvectors,
                   and  backtransform  them  using the input matrices
                   supplied in VR and/or VL; = 'S': compute  selected
                   right  and/or  left eigenvectors, specified by the
                   logical array SELECT.
    
         SELECT    (input) LOGICAL array, dimension (N)
                   If HOWMNY='S', SELECT specifies  the  eigenvectors
                   to  be  computed.  If HOWMNY='A' or 'B', SELECT is
                   not  referenced.   To   select   the   eigenvector
                   corresponding  to  the  j-th eigenvalue, SELECT(j)
                   must be set to .TRUE..
    
         N         (input) INTEGER
                   The order of the matrices A and B.  N >= 0.
    
         A         (input) COMPLEX array, dimension (LDA,N)
                   The upper triangular matrix A.
    
         LDA       (input) INTEGER
                   The  leading  dimension  of  array  A.    LDA   >=
                   max(1,N).
    
         B         (input) COMPLEX array, dimension (LDB,N)
                   The upper triangular matrix B.  B must  have  real
                   diagonal elements.
    
         LDB       (input) INTEGER
                   The  leading  dimension  of  array  B.    LDB   >=
                   max(1,N).
    
         VL        (input/output) COMPLEX array, dimension (LDVL,MM)
                   On entry, if SIDE = 'L' or 'B' and HOWMNY  =  'B',
                   VL  must  contain  an N-by-N matrix Q (usually the
                   unitary matrix Q of left Schur vectors returned by
                   CHGEQZ).   On  exit, if SIDE = 'L' or 'B', VL con-
                   tains:  if HOWMNY = 'A',  the  matrix  Y  of  left
                   eigenvectors of (A,B); if HOWMNY = 'B', the matrix
                   Q*Y; if HOWMNY = 'S',  the  left  eigenvectors  of
                   (A,B) specified by SELECT, stored consecutively in
                   the columns of VL, in  the  same  order  as  their
                   eigenvalues.  If SIDE = 'R', VL is not referenced.
    
         LDVL      (input) INTEGER
                   The  leading  dimension  of  array  VL.   LDVL  >=
                   max(1,N)  if  SIDE  = 'L' or 'B'; LDVL >= 1 other-
                   wise.
    
         VR        (input/output) COMPLEX array, dimension (LDVR,MM)
                   On entry, if SIDE = 'R' or 'B' and HOWMNY  =  'B',
                   VR  must  contain  an N-by-N matrix Q (usually the
                   unitary matrix Z of right Schur  vectors  returned
                   by  CHGEQZ).   On  exit,  if SIDE = 'R' or 'B', VR
                   contains:  if HOWMNY = 'A', the matrix X of  right
                   eigenvectors of (A,B); if HOWMNY = 'B', the matrix
                   Z*X; if HOWMNY = 'S', the  right  eigenvectors  of
                   (A,B) specified by SELECT, stored consecutively in
                   the columns of VR, in  the  same  order  as  their
                   eigenvalues.  If SIDE = 'L', VR is not referenced.
    
         LDVR      (input) INTEGER
                   The leading dimension of the array  VR.   LDVR  >=
                   max(1,N)  if  SIDE  = 'R' or 'B'; LDVR >= 1 other-
                   wise.
    
         MM        (input) INTEGER
                   The leading dimension of the array  VR.   LDVR  >=
                   max(1,N)  if  SIDE  = 'R' or 'B'; LDVR >= 1 other-
                   wise.
    
         MM        (input) INTEGER
                   The number of columns in the arrays VL and/or  VR.
                   MM >= M.
    
         M         (output) INTEGER
                   The number of columns in the arrays VL  and/or  VR
                   actually  used  to  store  the  eigenvectors.   If
                   HOWMNY = 'A' or 'B', M is set to N.  Each selected
                   eigenvector occupies one column.
    
         WORK      (workspace) COMPLEX array, dimension (2*N)
    
         RWORK     (workspace) REAL array, dimension (2*N)
    
         INFO      (output) INTEGER
                   = 0:  successful exit.
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру