The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dgesl (3)
  • >> dgesl (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dgesl - solve the linear system Ax = b for a general  matrix
         A,  which  has been LU- factored by xGECO or xGEFA, and vec-
         tors b and x.
    
    SYNOPSIS
         SUBROUTINE DGESL (DA, LDA, N, IPIVOT, DB, JOB)
    
         SUBROUTINE SGESL (SA, LDA, N, IPIVOT, SB, JOB)
    
         SUBROUTINE ZGESL (ZA, LDA, N, IPIVOT, ZB, JOB)
    
         SUBROUTINE CGESL (CA, LDA, N, IPIVOT, CB, JOB)
    
    
    
         #include <sunperf.h>
    
         void dgesl(double *da, int lda, int n, int  *ipivot,  double
                   *db, int job);
    
         void sgesl(float *sa, int lda, int n, int *ipivot, float *b,
                   int job);
    
         void zgesl(doublecomplex *za, int lda, int n,  int  *ipivot,
                   doublecomplex *zb, int job);
    
         void cgesl(complex *ca, int lda, int n, int *ipivot, complex
                   *cb, int job);
    
    ARGUMENTS
         xA        LU factorization of the matrix A, as  computed  by
                   xGECO or xGEFA.
    
         LDA       Leading dimension of the array A as specified in a
                   dimension or type statement.  LDA >= max(1,N).
    
         N         Order of the matrix A.  N >= 0.
    
         IPIVOT    Pivot vector as computed by xGECO or xGEFA.
    
         xB        On entry, the right-hand side vector b.  On  exit,
                   the solution vector x.
    
         JOB       Determines which  operation  the  subroutine  will
                   perform:
                        0    Solve the system Ax = b.
                        not 0     Solve the linear system  AHx  =  b.
                   Note that ATx = AHx for real matrices.
    
    SAMPLE PROGRAM
               PROGRAM TEST
               IMPLICIT NONE
         C
               INTEGER           IAXEQB, LDA, LDB, N
               PARAMETER        (IAXEQB = 0)
               PARAMETER        (N = 3)
               PARAMETER        (LDA = N)
               PARAMETER        (LDB = LDA)
         C
               DOUBLE PRECISION  A(LDA,N), B(LDB)
               INTEGER           ICOL, INFO, IPIVOT(N), IROW, JOB
         C
               EXTERNAL          DGEFA, DGESL
         C
         C     Initialize the array A to store the matrix A shown below.
         C     Initialize the array B to store the vector b shown below.
         C
         C         1  2  2        15
         C     A = 2  1  2    b = 15
         C         2  2  1        15
         C
               DATA A / 1.0D0, 3*2.0D0, 1.0D0, 3*2.0D0, 1.0D0 /
               DATA B / 3*1.5D1 /
         C
               PRINT 1000
               PRINT 1010, ((A(IROW,ICOL), ICOL = 1, N), IROW = 1, N)
               PRINT 1020
               PRINT 1030, B
               CALL DGEFA (A, LDA, N, IPIVOT, INFO)
               IF (INFO .EQ. 0) THEN
                 JOB = IAXEQB
                 CALL DGESL (A, LDA, N, IPIVOT, B, JOB)
                 PRINT 1040
                 PRINT 1030, B
               ELSE
                 PRINT 1050, INFO
               END IF
         C
          1000 FORMAT (1X, 'A:')
          1010 FORMAT (3(3X, F4.1))
          1020 FORMAT (/1X, 'b:')
          1030 FORMAT (1X, 2X, F4.1)
          1040 FORMAT (/1X, 'A**(-1)*b')
          1050 FORMAT (1X, 'A appears singular at ', I2)
         C
               END
    
    SAMPLE OUTPUT
          A:
             1.0    2.0    2.0
             2.0    1.0    2.0
             2.0    2.0    1.0
    
          b:
            15.0
            15.0
            15.0
    
          A**(-1)*b
             3.0
             3.0
             3.0
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру