The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dlaed1 (3)
  • >> dlaed1 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dlaed1 - compute  the  updated  eigensystem  of  a  diagonal
         matrix after modification by a rank-one symmetric matrix
    
    SYNOPSIS
         SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO,  CUTPNT,  WORK,
                   IWORK, INFO )
    
         INTEGER CUTPNT, INFO, LDQ, N
    
         DOUBLE PRECISION RHO
    
         INTEGER INDXQ( * ), IWORK( * )
    
         DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void dlaed1(int n,  double  *d,  double  *q,  int  ldq,  int
                   *indxq, double drho, int cutpnt, int *info) ;
    
    PURPOSE
         DLAED1 computes the updated eigensystem of a diagonal matrix
         after  modification  by  a  rank-one symmetric matrix.  This
         routine is used only for the eigenproblem which requires all
         eigenvalues   and  eigenvectors  of  a  tridiagonal  matrix.
         DLAED7 handles the case in which eigenvalues only or  eigen-
         values  and  eigenvectors  of a full symmetric matrix (which
         was reduced to tridiagonal form) are desired.
    
           T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) *  D(out)
         * Q'(out)
    
            where Z = Q'u, u is a vector of length N with ones in the
            CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
    
            The eigenvectors of the original matrix are stored in  Q,
         and the
            eigenvalues are in D.  The algorithm  consists  of  three
         stages:
    
               The first stage consists of deflating the size of  the
         problem
               when there are multiple eigenvalues or if there  is  a
         zero in
               the Z vector.  For each such occurence  the  dimension
         of the
               secular equation problem  is  reduced  by  one.   This
         stage is
               performed by the routine DLAED2.
               The second stage consists of calculating the updated
               eigenvalues. This is done by finding the roots of  the
         secular
               equation via the routine DLAED4 (as called by SLAED3).
               This routine also calculates the eigenvectors  of  the
         current
               problem.
    
               The final stage  consists  of  computing  the  updated
         eigenvectors
               directly using the updated eigenvalues.  The eigenvec-
         tors for
               the current problem are multiplied with the  eigenvec-
         tors from
               the overall problem.
    
    
    ARGUMENTS
         N         (input) INTEGER
                   The dimension of the symmetric tridiagonal matrix.
                   N >= 0.
    
         D         (input/output) DOUBLE PRECISION  array,  dimension
                   (N)
                   On entry, the eigenvalues of the  rank-1-perturbed
                   matrix.   On exit, the eigenvalues of the repaired
                   matrix.
    
         Q         (input/output) DOUBLE PRECISION  array,  dimension
                   (LDQ,N)
                   On entry, the eigenvectors of the rank-1-perturbed
                   matrix.  On exit, the eigenvectors of the repaired
                   tridiagonal matrix.
    
         LDQ       (input) INTEGER
                   The leading dimension of  the  array  Q.   LDQ  >=
                   max(1,N).
    
         INDXQ     (input/output) INTEGER array, dimension (N)
                   On entry, the permutation which  separately  sorts
                   the two subproblems in D into ascending order.  On
                   exit, the permutation which will  reintegrate  the
                   subproblems back into sorted order, i.e. D( INDXQ(
                   I = 1, N ) ) will be in ascending order.
    
         RHO       (input) DOUBLE PRECISION
                   The subdiagonal entry used to  create  the  rank-1
                   modification.
    
                   CUTPNT (input) INTEGER The location  of  the  last
                   eigenvalue in the leading sub-matrix.  min(1,N) <=
                   CUTPNT <= N.
    
         WORK      (workspace)  DOUBLE  PRECISION  array,   dimension
                   (3*N+2*N**2)
    
         IWORK     (workspace) INTEGER array, dimension (4*N)
    
         INFO      (output) INTEGER
                   = 0:  successful exit.
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
                   > 0:  if INFO = 1, an eigenvalue did not converge
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру