The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dlaev2 (3)
  • >> dlaev2 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dlaev2 - compute the eigendecomposition  of  a  2-by-2  sym-
         metric matrix  [ A B ]  [ B C ]
    
    SYNOPSIS
         SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
    
         DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1
    
    
    
         #include <sunperf.h>
    
         void dlaev2(double a, double b, double c, double *rt1,  dou-
                   ble *rt2, double *cs1, double *sn1) ;
    
    PURPOSE
         DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric
         matrix
    
            [  A   B  ]
            [  B   C  ].
    
         On return, RT1 is the eigenvalue of larger  absolute  value,
         RT2  is  the  eigenvalue  of  smaller  absolute  value,  and
         (CS1,SN1) is the unit right eigenvector for RT1, giving  the
         decomposition
    
            [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ]
            [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ].
    
    
    ARGUMENTS
         A         (input) DOUBLE PRECISION
                   The (1,1) element of the 2-by-2 matrix.
    
         B         (input) DOUBLE PRECISION
                   The (1,2) element and the conjugate of  the  (2,1)
                   element of the 2-by-2 matrix.
    
         C         (input) DOUBLE PRECISION
                   The (2,2) element of the 2-by-2 matrix.
    
         RT1       (output) DOUBLE PRECISION
                   The eigenvalue of larger absolute value.
    
         RT2       (output) DOUBLE PRECISION
                   The eigenvalue of smaller absolute value.
    
         CS1       (output) DOUBLE PRECISION
                   SN1     (output) DOUBLE PRECISION The vector (CS1,
                   SN1) is a unit right eigenvector for RT1.
    
    FURTHER DETAILS
         RT1 is accurate to a few ulps barring over/underflow.
    
         RT2 may be inaccurate if there is  massive  cancellation  in
         the  determinant  A*C-B*B;  higher  precision  or  correctly
         rounded or correctly truncated arithmetic would be needed to
         compute RT2 accurately in all cases.
    
         CS1  and  SN1  are  accurate   to   a   few   ulps   barring
         over/underflow.
    
         Overflow is possible only if RT1 is within a factor of 5  of
         overflow.   Underflow  is harmless if the input data is 0 or
         exceeds
            underflow_threshold / macheps.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру