The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dlahrd (3)
  • >> dlahrd (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dlahrd - reduce the first NB columns of a  real  general  n-
         by-(n-k+1) matrix A so that elements below the k-th subdiag-
         onal are zero
    
    SYNOPSIS
         SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
    
         INTEGER K, LDA, LDT, LDY, N, NB
    
         DOUBLE PRECISION A( LDA, * ), T( LDT, NB ), TAU(  NB  ),  Y(
                   LDY, NB )
    
    
    
         #include <sunperf.h>
    
         void dlahrd(int n, int k, int nb, double *da, int lda,  dou-
                   ble *tau, double *t, int ldt, double *dy, int ldy)
                   ;
    
    PURPOSE
         DLAHRD reduces the first NB columns of a real general  n-by-
         (n-k+1) matrix A so that elements below the k-th subdiagonal
         are zero. The reduction is performed by an orthogonal  simi-
         larity  transformation  Q'  * A * Q. The routine returns the
         matrices V and T which determine Q as a block reflector I  -
         V*T*V', and also the matrix Y = A * V * T.
    
         This is an auxiliary routine called by DGEHRD.
    
    
    ARGUMENTS
         N         (input) INTEGER
                   The order of the matrix A.
    
         K         (input) INTEGER
                   The offset for the reduction. Elements  below  the
                   k-th  subdiagonal  in  the  first  NB  columns are
                   reduced to zero.
    
         NB        (input) INTEGER
                   The number of columns to be reduced.
    
         A         (input/output) DOUBLE PRECISION  array,  dimension
                   (LDA,N-K+1)
                   On entry, the n-by-(n-k+1) general matrix  A.   On
                   exit, the elements on and above the k-th subdiago-
                   nal in the first NB columns are  overwritten  with
                   the  corresponding elements of the reduced matrix;
                   the elements below the k-th subdiagonal, with  the
                   array  TAU, represent the matrix Q as a product of
                   elementary reflectors. The other columns of A  are
                   unchanged.  See  Further Details.  LDA     (input)
                   INTEGER The leading dimension of the array A.  LDA
                   >= max(1,N).
    
         TAU       (output) DOUBLE PRECISION array, dimension (NB)
                   The scalar factors of the  elementary  reflectors.
                   See Further Details.
    
         T         (output) DOUBLE PRECISION array, dimension (NB,NB)
                   The upper triangular matrix T.
    
         LDT       (input) INTEGER
                   The leading dimension of the array T.  LDT >= NB.
    
         Y         (output)   DOUBLE   PRECISION   array,   dimension
                   (LDY,NB)
                   The n-by-nb matrix Y.
    
         LDY       (input) INTEGER
                   The leading dimension of the array Y. LDY >= N.
    
    FURTHER DETAILS
         The matrix Q is represented as a product  of  nb  elementary
         reflectors
    
            Q = H(1) H(2) . . . H(nb).
    
         Each H(i) has the form
    
            H(i) = I - tau * v * v'
    
         where tau is a real scalar, and v is a real vector with
         v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit  in
         A(i+k+1:n,i), and tau in TAU(i).
    
         The elements of the vectors v together form the  (n-k+1)-by-
         nb  matrix  V  which  is  needed, with T and Y, to apply the
         transformation to the unreduced part of the matrix, using an
         update of the form:  A := (I - V*T*V') * (A - Y*V').
    
         The contents of A on exit are illustrated by  the  following
         example with n = 7, k = 3 and nb = 2:
    
            ( a   h   a   a   a )
            ( a   h   a   a   a )
            ( a   h   a   a   a )
            ( h   h   a   a   a )
            ( v1  h   a   a   a )
            ( v1  v2  a   a   a )
            ( v1  v2  a   a   a )
    
         where a denotes an element  of  the  original  matrix  A,  h
         denotes a modified element of the upper Hessenberg matrix H,
         and vi denotes an element of the vector defining H(i).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру