The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dlasr (3)
  • >> dlasr (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dlasr - perform the transformation   A := P*A, when  SIDE  =
         'L'  or  'l' ( Left-hand side )   A := A*P', when SIDE = 'R'
         or 'r' ( Right-hand side )  where A is an m by n real matrix
         and P is an orthogonal matrix,
    
    SYNOPSIS
         SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
    
         CHARACTER DIRECT, PIVOT, SIDE
    
         INTEGER LDA, M, N
    
         DOUBLE PRECISION A( LDA, * ), C( * ), S( * )
    
    
    
         #include <sunperf.h>
    
         void dlasr(char side, char pivot, char direct, int m, int n,
                   double *dc, double *s, double *da, intlda);
    
    PURPOSE
         DLASR   performs the transformation consisting of a sequence
         of  plane  rotations  determined by the parameters PIVOT and
         DIRECT as follows ( z = m when SIDE = 'L' or 'l' and z  =  n
         when SIDE = 'R' or 'r' ):
    
         When  DIRECT = 'F' or 'f'  ( Forward sequence ) then
    
            P = P( z - 1 )*...*P( 2 )*P( 1 ),
    
         and when DIRECT = 'B' or 'b'  ( Backward sequence ) then
    
            P = P( 1 )*P( 2 )*...*P( z - 1 ),
    
         where  P( k ) is a plane rotation matrix for  the  following
         planes:
    
            when  PIVOT = 'V' or 'v'  ( Variable pivot ),
               the plane ( k, k + 1 )
    
            when  PIVOT = 'T' or 't'  ( Top pivot ),
               the plane ( 1, k + 1 )
    
            when  PIVOT = 'B' or 'b'  ( Bottom pivot ),
               the plane ( k, z )
    
         c( k ) and s( k )  must contain the  cosine  and  sine  that
         define  the  matrix   P( k ).  The two by two plane rotation
         part of the matrix P( k ), R( k ), is assumed to be  of  the
         form
            R( k ) = (  c( k )  s( k ) ).
                     ( -s( k )  c( k ) )
    
         This version vectorises across rows of the array A when SIDE
         = 'L'.
    
    
    ARGUMENTS
         SIDE      (input) CHARACTER*1
                   Specifies whether the plane rotation matrix  P  is
                   applied  to  A  on  the left or the right.  = 'L':
                   Left, compute A := P*A
                   = 'R':  Right, compute A:= A*P'
    
         DIRECT    (input) CHARACTER*1
                   Specifies whether  P  is  a  forward  or  backward
                   sequence of plane rotations.  = 'F':  Forward, P =
                   P( z - 1 )*...*P( 2 )*P( 1 )
                   = 'B':  Backward, P = P( 1 )*P( 2 )*...*P( z - 1 )
    
         PIVOT     (input) CHARACTER*1
                   Specifies the plane for  which  P(k)  is  a  plane
                   rotation  matrix.   =  'V':   Variable  pivot, the
                   plane (k,k+1)
                   = 'T':  Top pivot, the plane (1,k+1)
                   = 'B':  Bottom pivot, the plane (k,z)
    
         M         (input) INTEGER
                   The number of rows of the matrix A.  If m <= 1, an
                   immediate return is effected.
    
         N         (input) INTEGER
                   The number of columns of the matrix A.  If n <= 1,
                   an immediate return is effected.
    
                   C, S    (input) DOUBLE PRECISION arrays, dimension
                   (M-1)  if  SIDE = 'L' (N-1) if SIDE = 'R' c(k) and
                   s(k) contain the cosine and sine that  define  the
                   matrix  P(k).   The two by two plane rotation part
                   of the matrix P(k), R(k), is assumed to be of  the
                   form  R( k ) = (  c( k )  s( k ) ).  ( -s( k )  c(
                   k ) )
    
         A         (input/output) DOUBLE PRECISION  array,  dimension
                   (LDA,N)
                   The m by n matrix A.  On exit, A is overwritten by
                   P*A if SIDE = 'R' or by A*P' if SIDE = 'L'.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,M).
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру