The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dptsv (3)
  • >> dptsv (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dptsv - compute the solution to  a  real  system  of  linear
         equations  A*X  = B, where A is an N-by-N symmetric positive
         definite tridiagonal matrix,  and  X  and  B  are  N-by-NRHS
         matrices
    
    SYNOPSIS
         SUBROUTINE DPTSV( N, NRHS, D, E, B, LDB, INFO )
    
         INTEGER INFO, LDB, N, NRHS
    
         DOUBLE PRECISION B( LDB, * ), D( * ), E( * )
    
    
    
         #include <sunperf.h>
    
         void dptsv(int n, int nrhs, double  *d,  double  *e,  double
                   *db, int ldb, int *info) ;
    
    PURPOSE
         DPTSV computes the solution to a real system of linear equa-
         tions  A*X  =  B,  where  A  is an N-by-N symmetric positive
         definite tridiagonal matrix,  and  X  and  B  are  N-by-NRHS
         matrices.
    
         A is factored as A = L*D*L**T, and the factored form of A is
         then used to solve the system of equations.
    
    
    ARGUMENTS
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         NRHS      (input) INTEGER
                   The number of right hand sides, i.e.,  the  number
                   of columns of the matrix B.  NRHS >= 0.
    
         D         (input/output) DOUBLE PRECISION  array,  dimension
                   (N)
                   On entry, the n diagonal elements of the tridiago-
                   nal matrix A.  On exit, the n diagonal elements of
                   the diagonal matrix D from the factorization  A  =
                   L*D*L**T.
    
         E         (input/output) DOUBLE PRECISION  array,  dimension
                   (N-1)
                   On entry, the (n-1) subdiagonal  elements  of  the
                   tridiagonal matrix A.  On exit, the (n-1) subdiag-
                   onal elements of the unit bidiagonal factor L from
                   the  L*D*L**T  factorization of A.  (E can also be
                   regarded  as  the  superdiagonal   of   the   unit
                   bidiagonal  factor  U from the U**T*D*U factoriza-
                   tion of A.)
    
         B         (input/output) DOUBLE PRECISION  array,  dimension
                   (LDB,N)
                   On entry, the N-by-NRHS right hand side matrix  B.
                   On  exit,  if  INFO  =  0,  the N-by-NRHS solution
                   matrix X.
    
         LDB       (input) INTEGER
                   The leading dimension of  the  array  B.   LDB  >=
                   max(1,N).
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
                   > 0:  if INFO = i, the leading minor of order i is
                   not  positive  definite,  and the solution has not
                   been computed.  The  factorization  has  not  been
                   completed unless i = N.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру