NAME dstedc - compute all eigenvalues and, optionally, eigenvec- tors of a symmetric tridiagonal matrix using the divide and conquer method SYNOPSIS SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO ) CHARACTER COMPZ INTEGER INFO, LDZ, LIWORK, LWORK, N INTEGER IWORK( * ) DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) #include <sunperf.h> void dstedc(char compz, int n, double *d, double *e, double *dz, int ldz, int *info) ; PURPOSE DSTEDC computes all eigenvalues and, optionally, eigenvec- tors of a symmetric tridiagonal matrix using the divide and conquer method. The eigenvectors of a full or band real symmetric matrix can also be found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to tridiagonal form. This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. See DLAED3 for details. ARGUMENTS COMPZ (input) CHARACTER*1 = 'N': Compute eigenvalues only. = 'I': Compute eigenvectors of tridiagonal matrix also. = 'V': Compute eigenvectors of original dense symmetric matrix also. On entry, Z contains the orthogonal matrix used to reduce the original matrix to tridiagonal form. N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. D (input/output) DOUBLE PRECISION array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, if INFO = 0, the eigenvalues in ascending order. E (input/output) DOUBLE PRECISION array, dimension (N-1) On entry, the subdiagonal elements of the tridiag- onal matrix. On exit, E has been destroyed. Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) On entry, if COMPZ = 'V', then Z contains the orthogonal matrix used in the reduction to tridi- agonal form. On exit, if INFO = 0, then if COMPZ = 'V', Z contains the orthonormal eigenvectors of the original symmetric matrix, and if COMPZ = 'I', Z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If COMPZ = 'N', then Z is not referenced. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1. If eigenvectors are desired, then LDZ >= max(1,N). WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) On exit, if LWORK > 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. If COMPZ = 'V' and N > 1 then LWORK must be at least ( 1 + 3*N + 2*N*lg N + 3*N**2 ), where lg( N ) = smal- lest integer k such that 2**k >= N. If COMPZ = 'I' and N > 1 then LWORK must be at least ( 1 + 3*N + 2*N*lg N + 2*N**2 ). IWORK (workspace/output) INTEGER array, dimension (LIWORK) On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of the array IWORK. If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. If COMPZ = 'V' and N > 1 then LIWORK must be at least ( 6 + 6*N + 5*N*lg N ). If COMPZ = 'I' and N > 1 then LIWORK must be at least ( 2 + 5*N ). INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an ille- gal value. > 0: The algorithm failed to compute an eigen- value while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |