The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dtrsl (3)
  • >> dtrsl (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dtrsl - solve the linear system Ax  =  b  for  a  triangular
         matrix A and vectors b and x.
    
    SYNOPSIS
         SUBROUTINE DTRSL (DA, LDA, N, DB, JOB, INFO)
    
         SUBROUTINE STRSL (SA, LDA, N, SB, JOB, INFO)
    
         SUBROUTINE ZTRSL (ZA, LDA, N, ZB, JOB, INFO)
    
         SUBROUTINE CTRSL (CA, LDA, N, CB, JOB, INFO)
    
    
    
         #include <sunperf.h>
    
         void dtrsl(double *t, int ldt, int n, double *db,  int  job,
                   int *info) ;
    
         void strsl(float *t, int ldt, int n, float *sb, int job, int
                   *info) ;
    
         void ztrsl(doublecomplex *t, int ldt, int  n,  doublecomplex
                   *zb, int job, int *info) ;
    
         void ctrsl(complex *t, int ldt, int n, complex *cb, int job,
                   int *info) ;
    
    ARGUMENTS
         xA        Matrix A.
    
         LDA       Leading dimension of the array A as specified in a
                   dimension or type statement.  LDA >= max(1,N).
    
         N         Order of the matrix A.  N >= 0.
    
         xB        On entry, the right-hand side vector b.  On  exit,
                   the solution vector x.
    
         JOB       Determines which  operation  the  subroutine  will
                   perform:
                        00   Solve Ax = b, A lower triangular.
                        01   Solve Ax = b, A upper triangular.
                        10   Solve AHx = b, A lower triangular.
                        11   Solve AHx = b, A upper triangular.  Note
                   that ATx = AHx for real matrices.
    
         INFO      On exit:
                   INFO = 0  Subroutine completed normally.
                   INFO * 0  Returns the  index  of  the  first  zero
                   diagonal element of A.
    
    SAMPLE PROGRAM
               PROGRAM TEST
               IMPLICIT NONE
         C
               INTEGER           LDA, LOTRAN, N
               PARAMETER        (LOTRAN = 10)
               PARAMETER        (N = 5)
               PARAMETER        (LDA = N)
         C
               DOUBLE PRECISION  A(LDA,N), B(N)
               INTEGER           ICOL, INFO, IROW, JOB
         C
               EXTERNAL          DTRSL
         C
         C     Initialize the array A to store the 5x5 triangular matrix A
         C     shown below.
         C
         C         1                    5
         C         1  1                 4
         C     A = 1  1  1          b = 3
         C         1  1  1  1           2
         C         1  1  1  1  1        1
         C
               DATA A / 5*1.0D0, 8D8, 4*1.0D0, 2*8D8, 3*1.0D0, 3*8D8,
              $         2*1.0D0, 4*8D8, 1.0D0 /
               DATA B / 5.0D0, 4.0D0, 3.0D0, 2.0D0, 1.0D0 /
         C
         C     Print the initial values of the arrays.
         C
               PRINT 1000
               DO 100, IROW = 1, N
                 PRINT 1010, (A(IROW,ICOL), ICOL = 1, IROW)
           100 CONTINUE
               PRINT 1020
               PRINT 1010, ((A(IROW,ICOL), ICOL = 1, N), IROW = 1, LDA)
               PRINT 1030
               PRINT 1040, B
         C
         C     Solve the matrix in banded form.
         C
               JOB = LOTRAN
               CALL DTRSL (A, LDA, N, B, JOB, INFO)
               IF (INFO .EQ. 0) THEN
                 PRINT 1050
                 PRINT 1040, B
               ELSE
                 PRINT 1060, INFO
               END IF
         C
          1000 FORMAT (1X, 'A in full form:')
          1010 FORMAT (5(3X, F4.1))
          1020 FORMAT (/1X, 'A in triangular form:  (* in unused elements)')
          1030 FORMAT (/1X, 'b:')
          1040 FORMAT (3X, F4.1)
          1050 FORMAT (/1X, 'A''**(-1) * b:')
          1060 FORMAT (1X, 'A appears singular at ', I2)
         C
               END
    
    SAMPLE OUTPUT
          A in full form:
             1.0
             1.0    1.0
             1.0    1.0    1.0
             1.0    1.0    1.0    1.0
             1.0    1.0    1.0    1.0    1.0
    
          A in triangular form:  (* in unused elements)
             1.0   ****   ****   ****   ****
             1.0    1.0   ****   ****   ****
             1.0    1.0    1.0   ****   ****
             1.0    1.0    1.0    1.0   ****
             1.0    1.0    1.0    1.0    1.0
    
          b:
             5.0
             4.0
             3.0
             2.0
             1.0
    
          A'**(-1) * b:
             1.0
             1.0
             1.0
             1.0
             1.0
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру