Standard C++ Library Copyright 1998, Rogue Wave Software, Inc. NAME list - A sequence that supports bidirectional iterators. SYNOPSIS #include <list> template <class T, class Allocator = allocator<T> > class list; DESCRIPTION list<T,Allocator> is a type of sequence that supports bidirectional iterators. A list<T,Allocator> allows constant time insert and erase operations anywhere within the sequence, with storage management handled automatically. Constant time random access is not supported. Any type used for the template parameter T must include the following (where T is the type, t is a value of T and u is a const value of T): Copy constructors T(t) and T(u) Destructor t.~T() Address of &t and &u yielding T* and const T* respectively Assignment t = a where a is a (possibly const) value of T INTERFACE template <class T, class Allocator = allocator<T> > class list { public: // typedefs class iterator; class const_iterator; typedef typename Allocator::reference reference; typedef typename Allocator::const_reference const_reference; typedef typename Allocator::size_type size_type; typedef typename Allocator::difference_type difference_type; typedef T value_type; typedef Allocator allocator_type; typedef typename std::reverse_iterator<iterator> reverse_iterator; typedef typename std::reverse_iterator<const_iterator> const_reverse_iterator; // Construct/Copy/Destroy explicit list (const Allocator& = Allocator()); explicit list (size_type); list (size_type, const T&, const Allocator& = Allocator()) template <class InputIterator> list (InputIterator, InputIterator, const Allocator& = Allocator()); list(const list<T, Allocator>& x); ~list(); list<T,Allocator>& operator= (const list<T,Allocator>&); template <class InputIterator> void assign (InputIterator, InputIterator); void assign (size_type n, const T&); allocator_type get allocator () const; // Iterators iterator begin (); const_iterator begin () const; iterator end (); const_iterator end () const; reverse_iterator rbegin (); const_reverse_iterator rbegin () const; reverse_iterator rend (); const_reverse_iterator rend () const; // Capacity bool empty () const; size_type size () const; size_type max_size () const; void resize (size_type); void resize (size_type, T); // Element Access reference front (); const_reference front () const; reference back (); const_reference back () const; // Modifiers void push_front (const T&); void pop_front (); void push_back (const T&); void pop_back (); iterator insert (iterator, const T&); void insert (iterator, size_type, const T&); template <class InputIterator> void insert (iterator, InputIterator, InputIterator); iterator erase (iterator); iterator erase (iterator, iterator); void swap (list<T, Allocator>&); void clear (); // Special mutative operations on list void splice (iterator, list<T, Allocator>&); void splice (iterator, list<T, Allocator>&, iterator); void splice (iterator, list<T, Allocator>&, iterator, iterator); void remove (const T&); template <class Predicate> void remove_if (Predicate); void unique (); template <class BinaryPredicate> void unique (BinaryPredicate); void merge (list<T, Allocator>&); template <class Compare> void merge (list<T, Allocator>&, Compare); void sort (); template <class Compare> void sort (Compare); void reverse(); }; // Non-member List Operators template <class T, class Allocator> bool operator== (const list<T, Allocator>&, const list<T, Allocator>&); template <class T, class Allocator> bool operator!= (const list<T, Allocator>&, const list<T, Allocator>&); template <class T, class Allocator> bool operator< (const list<T, Allocator>&, const list<T, Allocator>&); template <class T, class Allocator> bool operator> (const list<T, Allocator>&, const list<T, Allocator>&); template <class T, class Allocator> bool operator<= (const list<T, Allocator>&, const list<T, Allocator>&); template <class T, class Allocator> bool operator>= (const list<T, Allocator>&, const list<T, Allocator>&); // Specialized Algorithms template <class T, class Allocator> void swap (list<T,Allocator>&, list<T, Allocator>&); CONSTRUCTORS explicit list(const Allocator& alloc = Allocator()); Creates a list of zero elements. The list uses the allocator alloc for all storage manage- ment. explicit list(size_type n); Creates a list of length n, containing n copies of the default value for type T. T must have a default construc- tor. The list uses the allocator Allocator() for all storage management. list(size_type n, const T& value, const Allocator& alloc = Allocator()); Creates a list of length n, containing n copies of value. The list uses the allocator alloc for all storage manage- ment. template <class InputIterator> list(InputIterator first, InputIterator last, const Allocator& alloc = Allocator()); Creates a list of length last - first, filled with all values obtained by dereferencing the InputIterators on the range [first, last). The list uses the allocator alloc for all storage management. list(const list<T, Allocator>& x); Creates a copy of x. DESTRUCTORS ~list(); Releases any allocated memory for this list. ASSIGNMENT OPERATORS list<T, Allocator>& operator=(const list<T, Allocator>& x) Erases all elements in self, then inserts into self a copy of each element in x. Returns a reference to *this. ALLOCATORS allocator_type get_allocator() const; Returns a copy of the allocator used by self for storage management. ITERATORS iterator begin(); Returns a bidirectional iterator that points to the first element. const_iterator begin() const; Returns a constant bidirectional iterator that points to the first element. iterator end(); Returns a bidirectional iterator that points to the past-the-end value. const_iterator end() const; Returns a constant bidirectional iterator that points to the past-the-end value. reverse_iterator rbegin(); Returns a bidirectional iterator that points to the past-the-end value. const_reverse_iterator rbegin() const; Returns a constant bidirectional iterator that points to the past-the-end value. reverse_iterator rend(); Returns a bidirectional iterator that points to the first element. const_reverse_iterator rend() const; Returns a constant bidirectional iterator that points to the first element. MEMBER FUNCTIONS template <class InputIterator> void assign(InputIterator first, InputIterator last); Erases all elements contained in self, then inserts new elements from the range [first, last). void assign(size_type n, const T& t); Erases all elements contained in self, then inserts n instances of the value of t. reference back(); Returns a reference to the last element. const_reference back() const; Returns a constant reference to the last element. void clear(); Erases all elements from the list. bool empty() const; Returns true if the size is zero. iterator erase(iterator position); Removes the element pointed to by position. Returns an iterator pointing to the element following the deleted element, or end() if the deleted item was the last one in this list. iterator erase(iterator first, iterator last); Removes the elements in the range (first, last). Returns an iterator pointing to the element following the element following the last deleted element, or end() if there were no elements after the deleted range. reference front(); Returns a reference to the first element. const_reference front() const; Returns a constant reference to the first element. iterator insert(iterator position, const T& x); Inserts x before position. Returns an iterator that points to the inserted x. void insert(iterator position, size_type n, const T& x); Inserts n copies of x before position. template <class InputIterator> void insert(iterator position, InputIterator first, InputIterator last); Inserts copies of the elements in the range [first, last) before position. size_type max_size() const; Returns size() of the largest possible list. void merge(list<T, Allocator>& x); Merges a sorted x with a sorted self using operator<. For equal elements in the two lists, elements from self always precede the elements from x. The merge function leaves x empty. template <class Compare> void merge(list<T, Allocator>& x, Compare comp); Merges a sorted x with sorted self using a compare func- tion object, comp. For identical elements in the two lists, elements from self always precede the elements from x. The merge function leaves x empty. void pop_back(); Removes the last element. void pop_front(); Removes the first element. void push_back(const T& x); Appends a copy of x to the end of the list. void push_front(const T& x); Appends a copy of x to the front of the list. void remove(const T& value); template <class Predicate> void remove_if(Predicate pred); Removes all elements in the list referenced by the list iterator i for which *i == value or pred(*i) == true, whichever is applicable. This is a stable operation. The relative order of list items that are not removed is preserved. void resize(size_type sz); Alters the size of self. If the new size ( sz ) is greater than the current size, sz-size() copies of the default value of type T are inserted at the end of the list. If the new size is smaller than the current capa- city, then the list is truncated by erasing size()-sz elements off the end. Otherwise, no action is taken. Type T must have a default constructor. void resize(size_type sz, T c); Alters the size of self. If the new size ( sz ) is greater than the current size, sz-size() c's are inserted at the end of the list. If the new size is smaller than the current capacity, then the list is truncated by eras- ing size()-sz elements off the end. Otherwise, no action is taken. void reverse(); Reverses the order of the elements. size_type size() const; Returns the number of elements. void sort(); Sorts self according to the operator<. sort maintains the relative order of equal elements. template <class Compare> void sort(Compare comp); Sorts self according to a comparison function object, comp. This is also a stable sort. void splice(iterator position, list<T, Allocator>& x); Inserts x before position, leaving x empty. void splice(iterator position, list<T, Allocator>& x, iterator i); Moves the elements pointed to by iterator i in x to self, inserting it before position. The element is removed from x. void splice(iterator position, list<T, Allocator >& x, iterator first, iterator last); Moves the elements in the range [first, last) in x to self, inserting them before position. The elements in the range [first, last) are removed from x. void swap(list <T, Allocator>& x); Exchanges self with x. void unique(); Erases copies of consecutive repeated elements leaving the first occurrence. template <class BinaryPredicate> void unique(BinaryPredicate binary_pred); Erases consecutive elements matching a true condition of the binary_pred. The first occurrence is not removed. NON-MEMBER OPERATORS template <class T, class Allocator> bool operator==(const list<T, Allocator>& x, const list<T, Allocator>& y); Returns true if x is the same as y. template <class T, class Allocator> bool operator!=(const list<T, Allocator>& x, const list<T, Allocator>& y); Returns !(x==y). template <class T, class Allocator> bool operator<(const list<T, Allocator>& x, const list<T,Allocator>& y); Returns true if the sequence defined by the elements con- tained in x is lexicographically less than the sequence defined by the elements contained in y. template <class T, class Allocator> bool operator>(const list<T, Allocator>& x, const list<T,Allocator>& y); Returns y < x. template <class T, class Allocator> bool operator<=(const list<T, Allocator>& x, const list<T,Allocator>& y); Returns !(y < x). template <class T, class Allocator> bool operator>=(const list<T, Allocator>& x, const list<T,Allocator>& y); Returns !(x < y). SPECIALIZED ALGORITHMS template <class T, class Allocator> void swap(list<T, Allocator>& a, list<T, Allocator>& b); Swaps the contents of a and b. EXAMPLE // // list.cpp // #include <list> #include <string> #include <iostream> using namespace std; // Print out a list of strings ostream& operator<<(ostream& out, const list<string>& l) { copy(l.begin(), l.end(), ostream_iterator<string,char>(cout," ")); return out; } int main(void) { // create a list of critters list<string> critters; int i; // insert several critters critters.insert(critters.begin(),"antelope"); critters.insert(critters.begin(),"bear"); critters.insert(critters.begin(),"cat"); // print out the list cout << critters << endl; // Change cat to cougar *find(critters.begin(),critters.end(),"cat") = "cougar"; cout << critters << endl; // put a zebra at the beginning // an ocelot ahead of antelope // and a rat at the end critters.push_front("zebra"); critters.insert(find(critters.begin(),critters.end(), "antelope"),"ocelot"); critters.push_back("rat"); cout << critters << endl; // sort the list (Use list's sort function since the // generic algorithm requires a random access iterator // and list only provides bidirectional) critters.sort(); cout << critters << endl; // now let's erase half of the critters int half = critters.size() >> 1; for(i = 0; i < half; ++i) { critters.erase(critters.begin()); } cout << critters << endl; return 0; } Program Output cat bear antelope cougar bear antelope zebra cougar bear ocelot antelope rat antelope bear cougar ocelot rat zebra ocelot rat zebra WARNINGS Member function templates are used in all containers included in the Standard Template Library. An example of this feature is the constructor for list<T,_Allocator> that takes two templatized iterators: template <class InputIterator> list (InputIterator, InputIterator, const Allocator& = Allocator()); list also has an insert function of this type. These func- tions, when not restricted by compiler limitations, allow you to use any type of input iterator as arguments. For com- pilers that do not support this feature, substitute func- tions allow you to use an iterator obtained from the same type of container as the one you are constructing (or calling a member function on), or you can use a pointer to the type of element you have in the container. For example, if your compiler does not support member func- tion templates, you can construct a list in the following two ways: int intarray[10]; list<int> first_list(intarray,intarray + 10); list<int> second_list(first_list.begin(),first_list.end()); But not this way: list<long> long_list(first_list.begin(),first_list.end()); since the long_list and first_list are not the same type. Additionally, list includes a merge function of this type. template <class Compare> void merge (list<T, Allocator>&, Compare); This function allows you to specify a compare function object to be used in merging two lists. In this case, a sub- stitute function is not included with the merge that uses the operator< as the default. Thus, if your compiler does not support member function templates, all list merges use operator<. Also, many compilers do not support default template argu- ments. If your compiler is one of these, you always need to supply the Allocator template argument. For instance, you have to write: list<int, allocator<int> > instead of: list<int> If your compiler does not support namespaces, then you do not need the using declaration for std. SEE ALSO allocator, Containers, Iterators
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |