The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

map (3)
  • map (1) ( Linux man: Команды и прикладные программы пользовательского уровня )
  • >> map (3) ( Solaris man: Библиотечные вызовы )
  • Ключ map обнаружен в базе ключевых слов.
  • 
                           Standard C++ Library
                 Copyright 1998, Rogue Wave Software, Inc.
    
    
    NAME
         map
    
          - An associative container with access  to  non-key  values
         using unique keys. A map supports bidirectional iterators.
    
    
    
    SYNOPSIS
         #include <map>
         template <class Key, class T, class Compare = less<Key>
                  class Allocator = allocator<pair<const Key, T>> >
         class map;
    
    
    
    DESCRIPTION
         map_<Key,_T,_Compare,_Allocator> gives fast access to stored
         values  of  type  T  that are indexed by unique keys of type
         Key. The default operation  for  key  comparison  is  the  <
         operator.
    
         map has bidirectional iterators that point to an instance of
         pair<const  Key  x,  T  y>  where  x is the key and y is the
         stored value associated with that key. The definition of map
         includes a typedef to this pair called value_type.
    
         The types used for both the template parameters  Key  and  T
         must  include  the  following  (where  T is the type, t is a
         value of T and u is a const value of T):
    
         Copy constructors   T(t) and T(u)
    
    
    
         Destructor   t.~T()
    
    
    
         Address of   &t and &u yielding T* and const T* respectively
    
    
    
         Assignment   t = a where a is a (possibly const) value of T
    
    
         The type  used  for  the  Compare  template  parameter  must
         satisfy the requirements for binary functions.
    
    
    
    INTERFACE
         template <class Key, class T, class Compare = less<Key>
                  class Allocator = allocator<pair<const Key, T>> >
         class map {
    
         public:
    
         // types
    
           typedef Key key_type;
           typedef typename Allocator::pointer pointer;
           typedef typename Allocator::const_pointer const_pointer;
           typedef T mapped_type;
           typedef pair<const Key, T> value_type;
           typedef Compare key_compare;
           typedef Allocator allocator_type;
    
           typedef typename
                   Allocator::reference        reference;
           typedef typename
                   Allocator::const_reference  const_reference;
    
           class iterator;
           class const_iterator;
    
           typedef typename
                   Allocator::size_type        size_type;
           typedef typename
                   Allocator::difference_type  difference_type;
    
           typedef typename std::reverse_iterator<iterator>
                                 reverse_iterator;
           typedef typename std::reverse_iterator<const_iterator>
                                 const_reverse_iterator;
    
           class value_compare
               : public binary_function<value_type, value_type, bool>
            {
             friend class map<Key, T, Compare, Allocator>;
    
             protected :
               Compare comp;
               value_compare(Compare c): comp(c) {}
             public :
               bool operator() (const value_type&,
                                const value_type&) const;
    
            };
    
         // Construct/Copy/Destroy
    
           explicit map (const Compare& = Compare(),
                         const Allocator& = Allocator ());
           template <class InputIterator>
            map (InputIterator, InputIterator,
                 const Compare& = Compare(),
                 const Allocator& = Allocator ());
           map (const map<Key, T, Compare, Allocator>&);
            ~map();
           map<Key, T, Compare, Allocator>&
            operator= (const map<Key, T, Compare, Allocator>&);
           allocator_type get_allocator () const;
    
         // Iterators
    
           iterator begin();
           const_iterator begin() const;
           iterator end();
           const_iterator end() const;
           reverse_iterator rbegin();
           const_reverse_iterator rbegin() const;
           reverse_iterator rend();
           const_reverse_iterator rend() const;
    
         // Capacity
    
           bool empty() const;
           size_type size() const;
           size_type max_size() const;
    
         // Element Access
    
           mapped_type& operator[] (const key_type&);
    
         // Modifiers
    
           pair<iterator, bool> insert (const value_type&);
           iterator insert (iterator, const value_type&);
           template <class InputIterator>
            void insert (InputIterator, InputIterator);
    
           void erase (iterator);
           size_type erase (const key_type&);
           void erase (iterator, iterator);
           void swap (map<Key, T, Compare, Allocator>&);
           void clear();
    
         // Observers
    
           key_compare key_comp() const;
           value_compare value_comp() const;
    
         // Map operations
    
           iterator find (const key_value&);
           const_iterator find (const key_value&) const;
           size_type count (const key_type&) const;
           iterator lower_bound (const key_type&);
           const_iterator lower_bound (const key_type&) const;
           iterator upper_bound (const key_type&);
           const_iterator upper_bound (const key_type&) const;
           pair<iterator, iterator> equal_range (const key_type&);
           pair<const_iterator, const_iterator>
             equal_range (const key_type&) const;
         };
    
         // Non-member Map Operators
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
          bool operator== (const map<Key, T, Compare, Allocator>&,
                          const map<Key, T, Compare, Allocator>&);
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
          bool operator!= (const map<Key, T, Compare, Allocator>&,
                          const map<Key, T, Compare, Allocator>&);
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         bool operator< (const map<Key, T, Compare, Allocator>&,
                         const map<Key, T, Compare, Allocator>&);
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         bool operator> (const map<Key, T, Compare, Allocator>&,
                         const map<Key, T, Compare, Allocator>&);
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         bool operator<= (const map<Key, T, Compare, Allocator>&,
                         const map<Key, T, Compare, Allocator>&);
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         bool operator>= (const map<Key, T, Compare, Allocator>&,
                         const map<Key, T, Compare, Allocator>&);
    
    
         // Specialized Algorithms
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         void swap (map<*Key,T,Compare,Allocator>&,
                    map<Key,T,Compare,Allocator>&);
    
    
    
    CONSTRUCTORS
         explicit map(const Compare& comp = Compare(),
                     const Allocator& alloc = Allocator());
    
    
            Constructs an empty map that uses the  relation  comp  to
            order keys, if it is supplied. The map uses the allocator
            alloc for all storage management.
    
    
    
         template <class InputIterator>
         map(InputIterator first, InputIterator last,
            const Compare& comp = Compare(),
            const Allocator& alloc = Allocator());
    
    
            Constructs a map containing values in the  range  [first,
            last).  Creation  of  the  new  map is only guaranteed to
            succeed if the iterators first and last return values  of
            type pair<class Key,       class Value> and all values of
            Key in the range[first, last) are unique.  The  map  uses
            the  relation comp to order keys, and the allocator alloc
            for all storage management.
    
    
    
         map(const map<Key,T,Compare,Allocator>& x);
    
    
            Creates a new map by copying all pairs of key  and  value
            from x.
    
    
    
    DESTRUCTORS
         ~map();
    
    
            Releases any allocated memory for this map.
    
    
    ALLOCATORS
         allocator_type get_allocator() const;
    
    
            Returns a copy of the allocator used by self for  storage
            management.
    
    
    
    ITERATORS
         iterator
         begin();
    
    
            Returns an iterator pointing to the first element  stored
            in  the  map.  "First" is defined by the map's comparison
            operator, Compare.
    
    
    
         const_iterator
         begin() const;
    
    
            Returns a const_iterator pointing to  the  first  element
            stored in the map.
    
    
    
         iterator
         end();
    
    
            Returns an iterator pointing to the last  element  stored
            in the map (in other words, the off-the-end value).
    
    
    
         const_iterator
         end() const;
    
    
            Returns a const_iterator pointing  to  the  last  element
            stored in the map.
    
    
    
         reverse_iterator
         rbegin();
    
            Returns a reverse_iterator pointing to the first  element
            stored  in  the map. "First" is defined by the map's com-
            parison operator, Compare.
    
    
    
         const_reverse_iterator
         rbegin() const;
    
    
            Returns a const_reverse_iterator pointing  to  the  first
            element stored in the map.
    
    
    
         reverse_iterator
         rend();
    
    
            Returns a reverse_iterator pointing to the  last  element
            stored  in  the  map  (in  other  words,  the off-the-end
            value).
    
    
    
         const_reverse_iterator
         rend() const;
    
    
            Returns a const_reverse_iterator  pointing  to  the  last
            element stored in the map.
    
    
    
    MEMBER OPERATORS
         map<Key, T, Compare, Allocator>&
         operator=(const map<Key, T, Compare, Allocator>& x);
    
    
            Replaces the contents of *this with a copy of the map x.
    
    
    
         mapped_type&
         operator[](const key_type& x);
    
    
            If an element with the key x exists in the  map,  then  a
            reference  to its associated value is returned. Otherwise
            the pair x,T() is inserted into the map and  a  reference
            to the default object T() is returned.
    
    
    
    MEMBER FUNCTIONS
         void
         clear();
    
    
            Erases all elements from the self.
    
    
    
         size_type
         count(const key_type& x) const;
    
    
            Returns a 1 if a value with the key x exists in the  map.
            Otherwise returns a 0.
    
    
    
         bool
         empty() const;
    
    
            Returns true if the map is empty, false otherwise.
    
    
    
         pair<iterator, iterator>
         equal_range (const key_type& x);
    
    
            Returns the pair (lower_bound(x), upper_bound(x)).
    
    
    
         pair<const_iterator,const_iterator>
         equal_range (const key_type& x) const;
    
    
            Returns the pair (lower_bound(x), upper_bound(x)).
    
    
    
         void
         erase(iterator position);
    
    
            Deletes the map element pointed to by the iterator  posi-
            tion. Returns an iterator pointing to the element follow-
            ing the deleted element, or end() if the deleted item was
            the last one in this list.
    
    
    
         void
         erase(iterator first, iterator last);
    
    
            If the iterators first and last point to the same map and
            last  is  reachable from first, all elements in the range
            (first, last) are deleted from the map. Returns an itera-
            tor  pointing  to  the element following the last deleted
            element, or end() if there were  no  elements  after  the
            deleted range.
    
    
    
         size_type
         erase(const key_type& x);
    
    
            Deletes the element with the key value x from the map, if
            one  exists.  Returns 1 if x existed in the map, 0 other-
            wise.
    
    
    
         iterator
         find(const key_type& x);
    
    
            Searches the map for a pair with  the  key  value  x  and
            returns  an iterator to that pair if it is found. If such
            a pair is not found the value end() is returned.
    
    
    
         const_iterator find(const key_type& x) const;
    
    
            Same as find above but returns a const_iterator.
    
    
    
         pair<iterator, bool>
         insert(const value_type& x);
         iterator
         insert(iterator position, const value_type& x);
    
            If a value_type with the same key as x is not present  in
            the  map, then x is inserted into the map. Otherwise, the
            pair is not inserted. A position may  be  supplied  as  a
            hint  regarding  where to do the insertion. If the inser-
            tion is done right after position, then  it  takes  amor-
            tized constant time. Otherwise it takes O(log N) time.
    
    
    
         template <class InputIterator>
         void
         insert(InputIterator first, InputIterator last);
    
    
            Copies of each element in the range  [first,  last)  that
            possess  a  unique  key  (one not already in the map) are
            inserted into the map. The iterators first and last  must
            return  values  of type pair<T1,T2>. This operation takes
            approximately O(N*log(size()+N)) time.
    
    
    
         key_compare
         key_comp() const;
    
    
            Returns a function object capable of comparing key values
            using  the  comparison operation, Compare, of the current
            map.
    
    
    
         iterator
         lower_bound(const key_type& x);
    
    
            Returns a reference to the first entry with a key greater
            than or equal to x.
    
    
    
         const_iterator
         lower_bound(const key_type& x) const;
    
    
            Same as lower_bound above but returns a const_iterator.
    
    
    
         size_type
         max_size() const;
    
            Returns the maximum possible size of the map.   This size
            is only constrained by the number of unique keys that can
            be represented by the type Key.
    
    
    
         size_type
         size() const;
    
    
            Returns the number of elements in the map.
    
    
    
         void
         swap(map<Key, T, Compare, Allocator>& x);
    
    
            Swaps the contents of the map x  with  the  current  map,
            *this.
    
    
    
         iterator
         upper_bound(const key_type& x);
    
    
            Returns a reference to the first entry with  a  key  less
            than or equal to x.
    
    
    
         const_iterator
         upper_bound(const key_type& x) const;
    
    
            Same as upper_bound above but returns a const_iterator.
    
    
    
         value_compare
         value_comp() const;
    
    
            Returns a function object capable of comparing pair<const
            Key,  T>  values using the comparison operation, Compare,
            of  the  current  map.  This  function  is  identical  to
            key_comp for sets.
    
    
    
    NON-MEMBER OPERATORS
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         bool operator==(const map<Key, T, Compare, Allocator>& x,
                         const map<Key, T, Compare, Allocator>& y);
    
    
            Returns true if all elements in x are element-wise  equal
            to all elements in y, using (T::operator==). Otherwise it
            returns false.
    
    
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         bool operator!=(const map<Key, T, Compare, Allocator>& x,
                         const map<Key, T, Compare, Allocator>& y);
    
    
            Returns !(x==y).
    
    
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         bool operator<(const map<Key, T, Compare, Allocator>& x,
                        const map<Key, T, Compare, Allocator>& y);
    
    
            Returns true if x is lexicographically less than y.  Oth-
            erwise, it returns false.
    
    
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         bool operator>(const map<Key, T, Compare, Allocator>& x,
                        const map<Key, T, Compare, Allocator>& y);
    
    
            Returns y < x.
    
    
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         bool operator<=(const map<Key, T, Compare, Allocator>& x,
                        const map<Key, T, Compare, Allocator>& y);
    
    
            Returns !(y < x).
    
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         bool operator>=(const map<Key, T, Compare, Allocator>& x,
                        const map<Key, T, Compare, Allocator>& y);
    
    
            Returns !(x < y).
    
    
    
    SPECIALIZED ALGORITHMS
         template <class Key, class T, class Compare,  class  Alloca-
         tor>
         void swap(map<Key, T, Compare, Allocator>& a,
                   map<Key, T, Compare, Allocator>& b);
    
    
            Swaps the contents of a and b.
    
    
    
    EXAMPLE
         //
         // map.cpp
         //
          #include <string>
          #include <map>
          #include <iostream>
         using namespace std;
    
         typedef map<string, int, less<string> > months_type;
    
          // Print out a pair
         template <class First, class Second>
         ostream& operator<<(ostream& out,
                             const pair<First,Second> & p)
          {
           cout << p.first << " has " << p.second << " days";
           return out;
          }
    
          // Print out a map
         ostream& operator<<(ostream& out, const months_type & l)
          {
           copy(l.begin(),l.end(), ostream_iterator
                         <months_type::value_type,char>(cout,"\n"));
           return out;
          }
    
         int main(void)
          {
            // create a map of months and the number of days
            // in the month
           months_type months;
    
           typedef months_type::value_type value_type;
    
            // Put the months in the multimap
           months.insert(value_type(string("January"),   31));
           months.insert(value_type(string("February"),   28));
           months.insert(value_type(string("February"),   29));
           months.insert(value_type(string("March"),     31));
           months.insert(value_type(string("April"),     30));
           months.insert(value_type(string("May"),       31));
           months.insert(value_type(string("June"),      30));
           months.insert(value_type(string("July"),      31));
           months.insert(value_type(string("August"),    31));
           months.insert(value_type(string("September"), 30));
           months.insert(value_type(string("October"),   31));
           months.insert(value_type(string("November"),  30));
           months.insert(value_type(string("December"),  31));
    
            // print out the months
            // Second February is not present
           cout << months << endl;
    
            // Find the Number of days in June
           months_type::iterator p = months.find(string("June"));
    
            // print out the number of days in June
           if (p != months.end())
             cout << endl << *p << endl;
    
           return 0;
          }
    
         Program Output
    
    
    
         April has 30 days
         August has 31 days
         December has 31 days
         February has 28 days
         January has 31 days
         July has 31 days
         June has 30 days
         March has 31 days
         May has 31 days
         November has 30 days
         October has 31 days
         September has 30 days
    
    
    
    WARNINGS
         Member  function  templates  are  used  in  all   containers
         included  in  the  Standard  Template Library. An example of
         this      feature      is      the      constructor      for
         map<Key,T,Compare,Allocator>   that  takes  two  templatized
         iterators:
    
    
         template <class InputIterator>
         map (InputIterator, InputIterator,
              const Compare& = Compare(),
              const Allocator& = Allocator());
    
         map also has an insert function of this  type.  These  func-
         tions,  when  not  restricted by compiler limitations, allow
         you to use any type of input iterator as arguments. For com-
         pilers  that  do  not support this feature, substitute func-
         tions allow you to use an iterator obtained  from  the  same
         type  of  container as the one you are constructing (or cal-
         ling a member function on), or you can use a pointer to  the
         type of element you have in the container.
    
         For example, if your compiler does not support member  func-
         tion templates, you can construct a map in the following two
         ways:
    
    
         map<int, int, less<int> >::value_type intarray[10];
         map<int, int, less<int> > first_map(intarray,
                                            intarray + 10);
         map<int, int, less<int> > second_map(first_map.begin(),
                                             first_map.end());
    
         But not this way:
    
    
         map<long, long, less<long> > long_map(first_map.begin(),
                                              first_map.end());
    
         Since the long_map and first_map are not the same type.
    
         Also, many compilers do not support default  template  argu-
         ments.  If your compiler is one of these, you always need to
         supply the Compare template argument and the Allocator  tem-
         plate argument. For instance, you have to write:
    
         map<int, int, less<int>, allocator<int> >
    
         instead of:
    
         map<int, int>
    
         If your compiler does not support namespaces,  then  you  do
         not need the using declaration for std.
    
    
    
    SEE ALSO
         allocator, Containers, Iterators, multimap
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру