NAME sormtr - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N' SYNOPSIS SUBROUTINE SORMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO ) CHARACTER SIDE, TRANS, UPLO INTEGER INFO, LDA, LDC, LWORK, M, N REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( LWORK ) #include <sunperf.h> void sormtr(char side, char uplo, char trans, int m, int n, float *sa, int lda, float *tau, float *sc, int ldc, int *info) ; PURPOSE SORMTR overwrites the general real M-by-N matrix C with TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by SSYTRD: if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). ARGUMENTS SIDE (input) CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A contains elementary reflectors from SSYTRD; = 'L': Lower triangle of A contains elementary reflectors from SSYTRD. TRANS (input) CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T. M (input) INTEGER The number of rows of the matrix C. M >= 0. N (input) INTEGER The number of columns of the matrix C. N >= 0. A (input) REAL array, dimension (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The vectors which define the elementary reflectors, as returned by SSYTRD. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. TAU (input) REAL array, dimension (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SSYTRD. C (input/output) REAL array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an ille- gal value
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |