NAME sqrsl - solve the linear system Ax = b for a general matrix A, which has been QR- factored by xQRDC, and vectors b and x. SYNOPSIS SUBROUTINE DQRSL (DA, LDA, N, K, DQRAUX, DY, DQY, DQTY, DB, DRESID, DAB, JOB, INFO) SUBROUTINE SQRSL (SA, LDA, N, K, SQRAUX, SY, SQY, SQTY, SB, SRESID, SAB, JOB, INFO) SUBROUTINE ZQRSL (ZA, LDA, N, K, ZQRAUX, CY, CQY, ZQTY, ZB, ZRESID, ZAB, JOB, INFO) SUBROUTINE CQRSL (CA, LDA, N, K, CQRAUX, ZY, ZQY, CQTY, CB, CRESID, CAB, JOB, INFO) #include <sunperf.h> void dqrsl(double *dx, int ldx, int n, int k, double *qraux, double *dy, double *qy, double *qty, double *db, double *rsd, double *xb, int job, int *info) ; void sqrsl(float *sx, int ldx, int n, int k, float *qraux, float *sy, float *qy, float *qty, float *sb, float *rsd, float *xb, int job, int *info) ; void zqrsl(doublecomplex *zx, int ldx, int n, int k, doub- lecomplex *qraux, doublecomplex *zy, doublecomplex *qy, doublecomplex *qty, doublecomplex *zb, doub- lecomplex *rsd, doublecomplex *xb, int job, int *info) ; void cqrsl(complex *cx, int ldx, int n, int k, complex *qraux, complex *cy, complex *qy, complex *qty, complex *b, complex *rsd, complex *xb, int job, int *info) ; ARGUMENTS xA Part of the QR factorization of matrix A as com- puted by xSRDC. LDA Leading dimension of the array A as specified in a dimension or type statement. LDA >= max(1,N). N Number of rows in the matrix AK where AK is described below. N >= 0. K Number of columns in the matrix AK where AK is described below. K >= 0. xQRAUX Auxiliary output from xQRDC. xY Vector to be manipulated by xQRSL. xQY On exit, QY contains Q * Y if its computation has been requested in JOB; QY is not referenced if its computation is not requested. xQTY On exit, QTY contains QT * Y if its computation has been requested in JOB; QTY is not referenced if its computation is not requested. xB On entry, the right-hand side vector b. On exit, the solution vector x. B is not referenced if its computation is not requested. xRESID On exit, RESID contains the least squares residual y - AK * b if its computation has been requested. RESID also is the orthogonal projection of y onto the orthogonal complement of the column space of AK. RESID is not referenced if its computation is not requested. xAB On exit, AB contains the least squares approxima- tion AK * b if its computation has been requested. AB is the orthogonal projection of y onto the column space of x. AB is not referenced if its computation is not requested. JOB Integer in the form abcde; determines which opera- tion or operations the subroutine will perform: a <> 0 compute QY b, c, d, or e <> 0 compute QTY c <> 0 compute B d <> 0 compute RESID e <> 0 compute AB INFO On exit: INFO = 0 Subroutine completed normally. INFO * 0 Returns a value k if the computation of B has been requested and R is singular; the value of k is then the index of the first zero element of R. The matrix AK is constructed from the fac- tored orthogonal matrix Q and upper triangular matrix R from xQRDC. SAMPLE PROGRAM PROGRAM TEST IMPLICIT NONE C INTEGER IDOB, IDORSD, IDOXB, LDA, N, NCOLA, NOPIV, NROWA PARAMETER (IDOB = 100) PARAMETER (IDORSD = 10) PARAMETER (IDOXB = 1) PARAMETER (N = 3) PARAMETER (LDA = N) PARAMETER (NCOLA = 2) PARAMETER (NOPIV = 0) PARAMETER (NROWA = N) C DOUBLE PRECISION A(LDA,NCOLA), B(NCOLA), NULL(N), QRAUX(N) DOUBLE PRECISION RESID(N), WORK(N), Y(N) INTEGER ICOL, INFO, IROW, JOB, JPIVOT C EXTERNAL DQRDC, DQRSL C C Initialize the array A to store the matrix A shown below. C Initialize the array Y to store the vector y shown below. C C 1 1 1 C A = 1 0 y = 0 C 0 1 -5 C DATA A / 1.0D0, 1.0D0, 0.0D0, 1.0D0, 0.0D0, 1.0D0 / DATA Y / 1.0D0, 0.0D0, -5.0D0 / C PRINT 1000 PRINT 1010, ((A(IROW,ICOL), ICOL = 1, NCOLA), IROW = 1, NROWA) PRINT 1020 PRINT 1030, Y JOB = NOPIV CALL DQRDC (A, LDA, NROWA, NCOLA, QRAUX, JPIVOT, WORK, JOB) JOB = IDOB + IDORSD + IDOXB CALL DQRSL (A, LDA, NROWA, NCOLA, QRAUX, Y, NULL, NULL, B, $ RESID, NULL, JOB, INFO) IF (INFO .EQ. 0) THEN PRINT 1040 PRINT 1050, B PRINT 1060 PRINT 1050, RESID ELSE PRINT 1070 END IF C 1000 FORMAT (1X, 'A:') 1010 FORMAT (2(3X, F4.1)) 1020 FORMAT (/1X, 'y:') 1030 FORMAT (3X, F4.1) 1040 FORMAT (/1X, 'Least squares solution:') 1050 FORMAT (3X, F4.1) 1060 FORMAT (/1X, 'Residual:') 1070 FORMAT (1X, 'A is singular.') C END SAMPLE OUTPUT A: 1.0 1.0 1.0 0.0 0.0 1.0 y: 1.0 0.0 -5.0 Least squares solution: 2.0 -3.0 Residual: 2.0 -2.0 -2.0
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |