The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

zheevd (3)
  • >> zheevd (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         zheevd - compute all eigenvalues and, optionally,  eigenvec-
         tors of a complex Hermitian matrix A
    
    SYNOPSIS
         SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA,  W,  WORK,  LWORK,
                   RWORK, LRWORK, IWORK, LIWORK, INFO )
    
         CHARACTER JOBZ, UPLO
    
         INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N
    
         INTEGER IWORK( * )
    
         DOUBLE PRECISION RWORK( * ), W( * )
    
         COMPLEX*16 A( LDA, * ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void zheevd(char jobz, char uplo, int n, doublecomplex  *za,
                   int lda, double *w, int *info) ;
    
    PURPOSE
         ZHEEVD computes all eigenvalues and,  optionally,  eigenvec-
         tors  of  a complex Hermitian matrix A.  If eigenvectors are
         desired, it uses a divide and conquer algorithm.
    
         The divide and conquer algorithm makes very mild assumptions
         about  floating  point  arithmetic. It will work on machines
         with a guard digit  in  add/subtract,  or  on  those  binary
         machines  without  guard digits which subtract like the Cray
         X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could  conceivably
         fail  on  hexadecimal  or  decimal  machines  without  guard
         digits, but we know of none.
    
    
    ARGUMENTS
         JOBZ      (input) CHARACTER*1
                   = 'N':  Compute eigenvalues only;
                   = 'V':  Compute eigenvalues and eigenvectors.
    
         UPLO      (input) CHARACTER*1
                   = 'U':  Upper triangle of A is stored;
                   = 'L':  Lower triangle of A is stored.
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         A         (input/output) COMPLEX*16 array,  dimension  (LDA,
                   N)
                   On entry, the Hermitian matrix A.  If UPLO =  'U',
                   the leading N-by-N upper triangular part of A con-
                   tains the upper triangular part of the  matrix  A.
                   If UPLO = 'L', the leading N-by-N lower triangular
                   part of A contains the lower  triangular  part  of
                   the  matrix  A.   On  exit, if JOBZ = 'V', then if
                   INFO = 0, A contains the orthonormal  eigenvectors
                   of  the matrix A.  If JOBZ = 'N', then on exit the
                   lower triangle (if UPLO='L') or the upper triangle
                   (if  UPLO='U')  of  A,  including the diagonal, is
                   destroyed.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,N).
    
         W         (output) DOUBLE PRECISION array, dimension (N)
                   If INFO = 0, the eigenvalues in ascending order.
    
         WORK      (workspace/output)  COMPLEX*16  array,   dimension
                   (LWORK)
                   On exit, if LWORK > 0, WORK(1) returns the optimal
                   LWORK.
    
         LWORK     (input) INTEGER
                   The  length  of  the  array  WORK.   If  N  <=  1,
                   LWORK  must be at least 1.  If JOBZ  = 'N' and N >
                   1, LWORK must be at least N + 1.  If JOBZ   =  'V'
                   and N > 1, LWORK must be at least 2*N + N**2.
    
         RWORK     (workspace/output) DOUBLE PRECISION array,
                   dimension  (LRWORK)  On  exit,  if  LRWORK  >   0,
                   RWORK(1) returns the optimal LRWORK.
    
         LRWORK    (input) INTEGER
                   The dimension of the array  RWORK.   If  N  <=  1,
                   LRWORK must be at least 1.  If JOBZ  = 'N' and N >
                   1, LRWORK must be at least N.  If JOBZ  = 'V'  and
                   N  > 1, LRWORK must be at least 1 + 4*N + 2*N*lg N
                   + 3*N**2 , where lg( N ) = smallest integer k such
                   that 2**k >= N .
    
         IWORK     (workspace/output)   INTEGER   array,    dimension
                   (LIWORK)
                   On exit, if  LIWORK  >  0,  IWORK(1)  returns  the
                   optimal LIWORK.
    
         LIWORK    (input) INTEGER
                   The dimension of the array  IWORK.   If  N  <=  1,
                   LIWORK must be at least 1.  If JOBZ  = 'N' and N >
                   1, LIWORK must be at least 1.  If JOBZ  = 'V'  and
                   N > 1, LIWORK must be at least 2 + 5*N.
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
                   > 0:  if INFO = i, the algorithm  failed  to  con-
                   verge;  i off-diagonal elements of an intermediate
                   tridiagonal form did not converge to zero.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру