The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

tty (4)
  • tty (1) ( Solaris man: Команды и прикладные программы пользовательского уровня )
  • tty (1) ( FreeBSD man: Команды и прикладные программы пользовательского уровня )
  • tty (1) ( Русские man: Команды и прикладные программы пользовательского уровня )
  • tty (1) ( Linux man: Команды и прикладные программы пользовательского уровня )
  • tty (1) ( POSIX man: Команды и прикладные программы пользовательского уровня )
  • >> tty (4) ( FreeBSD man: Специальные файлы /dev/* )
  • tty (4) ( Русские man: Специальные файлы /dev/* )
  • tty (4) ( Linux man: Специальные файлы /dev/* )
  • tty (7) ( Solaris man: Макропакеты и соглашения )
  • Ключ tty обнаружен в базе ключевых слов.

  • BSD mandoc
     

    NAME

    
    
    tty
    
     - general terminal interface
    
     
    

    SYNOPSIS

       #include <sys/ioctl.h>
     

    DESCRIPTION

    This section describes the interface to the terminal drivers in the system.  

    Terminal Special Files

    Each hardware terminal port on the system usually has a terminal special device file associated with it in the directory ``/dev/'' (for example, ``/dev/tty03''). When a user logs into the system on one of these hardware terminal ports, the system has already opened the associated device and prepared the line for normal interactive use (see getty(8).) There is also a special case of a terminal file that connects not to a hardware terminal port, but to another program on the other side. These special terminal devices are called ptys and provide the mechanism necessary to give users the same interface to the system when logging in over a network (using rlogin(1), or telnet(1) for example). Even in these cases the details of how the terminal file was opened and set up is already handled by special software in the system. Thus, users do not normally need to worry about the details of how these lines are opened or used. Also, these lines are often used for dialing out of a system (through an out-calling modem), but again the system provides programs that hide the details of accessing these terminal special files (see tip(1)).

    When an interactive user logs in, the system prepares the line to behave in a certain way (called a line discipline ) the particular details of which is described in stty(1) at the command level, and in termios(4) at the programming level. A user may be concerned with changing settings associated with his particular login terminal and should refer to the preceding man pages for the common cases. The remainder of this man page is concerned with describing details of using and controlling terminal devices at a low level, such as that possibly required by a program wishing to provide features similar to those provided by the system.  

    Line disciplines

    A terminal file is used like any other file in the system in that it can be opened, read, and written to using standard system calls. For each existing terminal file, there is a software processing module called a line discipline is associated with it. The line discipline essentially glues the low level device driver code with the high level generic interface routines (such as read(2) and write(2)), and is responsible for implementing the semantics associated with the device. When a terminal file is first opened by a program, the default line discipline called the termios line discipline is associated with the file. This is the primary line discipline that is used in most cases and provides the semantics that users normally associate with a terminal. When the termios line discipline is in effect, the terminal file behaves and is operated according to the rules described in termios(4). Please refer to that man page for a full description of the terminal semantics. The operations described here generally represent features common across all line disciplines however some of these calls may not make sense in conjunction with a line discipline other than termios and some may not be supported by the underlying hardware (or lack thereof, as in the case of ptys).  

    Terminal File Operations

    All of the following operations are invoked using the ioctl(2) system call. Refer to that man page for a description of the request and argp parameters. In addition to the ioctl requests defined here, the specific line discipline in effect will define other requests specific to it (actually termios(4) defines them as function calls, not ioctl requests . The following section lists the available ioctl requests. The name of the request, a description of its purpose, and the typed argp parameter (if any) are listed. For example, the first entry says

    and would be called on the terminal associated with file descriptor zero by the following code fragment:

            int ldisc;
    
            ldisc = TTYDISC;
            ioctl(0, TIOCSETD, &ldisc);
    
     

    Terminal File Request Descriptions

    TIOCSETD Fa int *ldisc
    Change to the new line discipline pointed to by Fa ldisc . The available line disciplines are listed in    #include <sys/ttycom.h>
    and currently are:

    TTYDISC
    Termios interactive line discipline.
    TABLDISC
    Tablet line discipline.
    SLIPDISC
    Serial IP line discipline.
    PPPDISC
    PPP line discipline.
    NETGRAPHDISC
    Netgraph ng_tty4 line discipline.

    TIOCGETD Fa int *ldisc
    Return the current line discipline in the integer pointed to by Fa ldisc .
    TIOCSBRK Fa void
    Set the terminal hardware into BREAK condition.
    TIOCCBRK Fa void
    Clear the terminal hardware BREAK condition.
    TIOCSDTR Fa void
    Assert data terminal ready (DTR).
    TIOCCDTR Fa void
    Clear data terminal ready (DTR).
    TIOCGPGRP Fa int *tpgrp
    Return the current process group with which the terminal is associated in the integer pointed to by Fa tpgrp . This is the underlying call that implements the termios(4) tcgetattr ();
    call.
    TIOCSPGRP Fa int *tpgrp
    Associate the terminal with the process group (as an integer) pointed to by Fa tpgrp . This is the underlying call that implements the termios(4) tcsetattr ();
    call.
    TIOCGETA Fa struct termios *term
    Place the current value of the termios state associated with the device in the termios structure pointed to by Fa term . This is the underlying call that implements the termios(4) tcgetattr ();
    call.
    TIOCSETA Fa struct termios *term
    Set the termios state associated with the device immediately. This is the underlying call that implements the termios(4) tcsetattr ();
    call with the TCSANOW option.
    TIOCSETAW Fa struct termios *term
    First wait for any output to complete, then set the termios state associated with the device. This is the underlying call that implements the termios(4) tcsetattr ();
    call with the TCSADRAIN option.
    TIOCSETAF Fa struct termios *term
    First wait for any output to complete, clear any pending input, then set the termios state associated with the device. This is the underlying call that implements the termios(4) tcsetattr ();
    call with the TCSAFLUSH option.
    TIOCOUTQ Fa int *num
    Place the current number of characters in the output queue in the integer pointed to by Fa num .
    TIOCSTI Fa char *cp
    Simulate typed input. Pretend as if the terminal received the character pointed to by Fa cp .
    TIOCNOTTY Fa void
    This call is obsolete but left for compatibility. In the past, when a process that did not have a controlling terminal (see The Controlling Terminal in termios(4)) first opened a terminal device, it acquired that terminal as its controlling terminal. For some programs this was a hazard as they did not want a controlling terminal in the first place, and this provided a mechanism to disassociate the controlling terminal from the calling process. It must be called by opening the file /dev/tty and calling TIOCNOTTY on that file descriptor.

    The current system does not allocate a controlling terminal to a process on an open ();
    call: there is a specific ioctl called TIOCSCTTY to make a terminal the controlling terminal. In addition, a program can fork ();
    and call the setsid ();
    system call which will place the process into its own session - which has the effect of disassociating it from the controlling terminal. This is the new and preferred method for programs to lose their controlling terminal.

    TIOCSTOP Fa void
    Stop output on the terminal (like typing ^S at the keyboard).
    TIOCSTART Fa void
    Start output on the terminal (like typing ^Q at the keyboard).
    TIOCSCTTY Fa void
    Make the terminal the controlling terminal for the process (the process must not currently have a controlling terminal).
    TIOCDRAIN Fa void
    Wait until all output is drained.
    TIOCEXCL Fa void
    Set exclusive use on the terminal. No further opens are permitted except by root. Of course, this means that programs that are run by root (or setuid) will not obey the exclusive setting - which limits the usefulness of this feature.
    TIOCNXCL Fa void
    Clear exclusive use of the terminal. Further opens are permitted.
    TIOCFLUSH Fa int *what
    If the value of the int pointed to by Fa what contains the FREAD bit as defined in In sys/file.h , then all characters in the input queue are cleared. If it contains the FWRITE bit, then all characters in the output queue are cleared. If the value of the integer is zero, then it behaves as if both the FREAD and FWRITE bits were set (i.e., clears both queues).
    TIOCGWINSZ Fa struct winsize *ws
    Put the window size information associated with the terminal in the winsize structure pointed to by Fa ws . The window size structure contains the number of rows and columns (and pixels if appropriate) of the devices attached to the terminal. It is set by user software and is the means by which most full-screen oriented programs determine the screen size. The winsize structure is defined in In sys/ioctl.h .
    TIOCSWINSZ Fa struct winsize *ws
    Set the window size associated with the terminal to be the value in the winsize structure pointed to by Fa ws (see above).
    TIOCCONS Fa int *on
    If Fa on points to a non-zero integer, redirect kernel console output (kernel printf's) to this terminal. If Fa on points to a zero integer, redirect kernel console output back to the normal console. This is usually used on workstations to redirect kernel messages to a particular window.
    TIOCMSET Fa int *state
    The integer pointed to by Fa state contains bits that correspond to modem state. Following is a list of defined variables and the modem state they represent:

    TIOCM_LE
    Line Enable.
    TIOCM_DTR
    Data Terminal Ready.
    TIOCM_RTS
    Request To Send.
    TIOCM_ST
    Secondary Transmit.
    TIOCM_SR
    Secondary Receive.
    TIOCM_CTS
    Clear To Send.
    TIOCM_CAR
    Carrier Detect.
    TIOCM_CD
    Carrier Detect (synonym).
    TIOCM_RNG
    Ring Indication.
    TIOCM_RI
    Ring Indication (synonym).
    TIOCM_DSR
    Data Set Ready.

    This call sets the terminal modem state to that represented by Fa state . Not all terminals may support this.

    TIOCMGET Fa int *state
    Return the current state of the terminal modem lines as represented above in the integer pointed to by Fa state .
    TIOCMBIS Fa int *state
    The bits in the integer pointed to by Fa state represent modem state as described above, however the state is OR-ed in with the current state.
    TIOCMBIC Fa int *state
    The bits in the integer pointed to by Fa state represent modem state as described above, however each bit which is on in Fa state is cleared in the terminal.

     

    IMPLEMENTATION NOTES

    The total number of input and output bytes through all terminal devices are available via the kern.tk_nin and kern.tk_nout read-only sysctl(8) variables.  

    SEE ALSO

    stty(1), ioctl(2), ng_tty4, pty(4), termios(4), getty(8)


     

    Index

    NAME
    SYNOPSIS
    DESCRIPTION
    Terminal Special Files
    Line disciplines
    Terminal File Operations
    Terminal File Request Descriptions
    IMPLEMENTATION NOTES
    SEE ALSO


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру