dhcpd - Dynamic Host Configuration Protocol Server
This software is free software. At various times its development has been underwritten by various organizations, including the ISC and Vixie Enterprises. The development of 3.0 has been funded almost entirely by Nominum, Inc.
At this point development is being shepherded by Ted Lemon, and hosted by the ISC, but the future of this project depends on you. If you have features you want, please consider implementing them.
The DHCP protocol allows a host which is unknown to the network administrator to be automatically assigned a new IP address out of a pool of IP addresses for its network. In order for this to work, the network administrator allocates address pools in each subnet and enters them into the dhcpd.conf(5) file.
On startup, dhcpd reads the dhcpd.conf file and stores a list of available addresses on each subnet in memory. When a client requests an address using the DHCP protocol, dhcpd allocates an address for it. Each client is assigned a lease, which expires after an amount of time chosen by the administrator (by default, one day). Before leases expire, the clients to which leases are assigned are expected to renew them in order to continue to use the addresses. Once a lease has expired, the client to which that lease was assigned is no longer permitted to use the leased IP address.
In order to keep track of leases across system reboots and server restarts, dhcpd keeps a list of leases it has assigned in the dhcpd.leases(5) file. Before dhcpd grants a lease to a host, it records the lease in this file and makes sure that the contents of the file are flushed to disk. This ensures that even in the event of a system crash, dhcpd will not forget about a lease that it has assigned. On startup, after reading the dhcpd.conf file, dhcpd reads the dhcpd.leases file to refresh its memory about what leases have been assigned.
New leases are appended to the end of the dhcpd.leases file. In order to prevent the file from becoming arbitrarily large, from time to time dhcpd creates a new dhcpd.leases file from its in-core lease database. Once this file has been written to disk, the old file is renamed dhcpd.leases~, and the new file is renamed dhcpd.leases. If the system crashes in the middle of this process, whichever dhcpd.leases file remains will contain all the lease information, so there is no need for a special crash recovery process.
BOOTP support is also provided by this server. Unlike DHCP, the BOOTP protocol does not provide a protocol for recovering dynamically-assigned addresses once they are no longer needed. It is still possible to dynamically assign addresses to BOOTP clients, but some administrative process for reclaiming addresses is required. By default, leases are granted to BOOTP clients in perpetuity, although the network administrator may set an earlier cutoff date or a shorter lease length for BOOTP leases if that makes sense.
BOOTP clients may also be served in the old standard way, which is to simply provide a declaration in the dhcpd.conf file for each BOOTP client, permanently assigning an address to each client.
Whenever changes are made to the dhcpd.conf file, dhcpd must be restarted. To restart dhcpd, send a SIGTERM (signal 15) to the process ID contained in /var/run/dhcpd.pid, and then re-invoke dhcpd. Because the DHCP server database is not as lightweight as a BOOTP database, dhcpd does not automatically restart itself when it sees a change to the dhcpd.conf file.
Note: We get a lot of complaints about this. We realize that it would be nice if one could send a SIGHUP to the server and have it reload the database. This is not technically impossible, but it would require a great deal of work, our resources are extremely limited, and they can be better spent elsewhere. So please don't complain about this on the mailing list unless you're prepared to fund a project to implement this feature, or prepared to do it yourself.
The names of the network interfaces on which dhcpd should listen for broadcasts may be specified on the command line. This should be done on systems where dhcpd is unable to identify non-broadcast interfaces, but should not be required on other systems. If no interface names are specified on the command line dhcpd will identify all network interfaces which are up, eliminating non-broadcast interfaces if possible, and listen for DHCP broadcasts on each interface.
If dhcpd should listen on a port other than the standard (port 67), the -p flag may used. It should be followed by the udp port number on which dhcpd should listen. This is mostly useful for debugging purposes.
To run dhcpd as a foreground process, rather than allowing it to run as a daemon in the background, the -f flag should be specified. This is useful when running dhcpd under a debugger, or when running it out of inittab on System V systems.
To have dhcpd log to the standard error descriptor, specify the -d flag. This can be useful for debugging, and also at sites where a complete log of all dhcp activity must be kept but syslogd is not reliable or otherwise cannot be used. Normally, dhcpd will log all output using the syslog(3) function with the log facility set to LOG_DAEMON.
Dhcpd can be made to use an alternate configuration file with the -cf flag, or an alternate lease file with the -lf flag. Because of the importance of using the same lease database at all times when running dhcpd in production, these options should be used only for testing lease files or database files in a non-production environment.
When starting dhcpd up from a system startup script (e.g., /etc/rc), it may not be desirable to print out the entire copyright message on startup. To avoid printing this message, the -q flag may be specified.
The DHCP server reads two files on startup: a configuration file, and a lease database. If the -t flag is specified, the server will simply test the configuration file for correct syntax, but will not attempt to perform any network operations. This can be used to test the a new configuration file automatically before installing it.
The -T flag can be used to test the lease database file in a similar way.
The -tf and -play options allow you to specify a file into which the entire startup state of the server and all the transactions it processes are either logged or played back from. This can be useful in submitting bug reports - if you are getting a core dump every so often, you can start the server with the -tf option and then, when the server dumps core, the trace file will contain all the transactions that led up to it dumping core, so that the problem can be easily debugged with -play.
The -play option must be specified with an alternate lease file, using the -lf switch, so that the DHCP server doesn't wipe out your existing lease file with its test data. The DHCP server will refuse to operate in playback mode unless you specify an alternate lease file.
To run the DHCP server in a chrooted jail, specify the -u option with the dedicated pseudo-user and additional -j with the chroot path (e.g. /var/lib/dhcp/dhcpd).
subnet 239.252.197.0 netmask 255.255.255.0 { range 239.252.197.10 239.252.197.250; }
Multiple address ranges may be specified like this:
subnet 239.252.197.0 netmask 255.255.255.0 { range 239.252.197.10 239.252.197.107; range 239.252.197.113 239.252.197.250; }
If a subnet will only be provided with BOOTP service and no dynamic address assignment, the range clause can be left out entirely, but the subnet statement must appear.
For example, in an office environment where systems are added from time to time and removed from time to time, but move relatively infrequently, it might make sense to allow lease times of a month of more. In a final test environment on a manufacturing floor, it may make more sense to assign a maximum lease length of 30 minutes - enough time to go through a simple test procedure on a network appliance before packaging it up for delivery.
It is possible to specify two lease lengths: the default length that will be assigned if a client doesn't ask for any particular lease length, and a maximum lease length. These are specified as clauses to the subnet command:
subnet 239.252.197.0 netmask 255.255.255.0 { range 239.252.197.10 239.252.197.107; default-lease-time 600; max-lease-time 7200; }
This particular subnet declaration specifies a default lease time of 600 seconds (ten minutes), and a maximum lease time of 7200 seconds (two hours). Other common values would be 86400 (one day), 604800 (one week) and 2592000 (30 days).
Each subnet need not have the same lease---in the case of an office environment and a manufacturing environment served by the same DHCP server, it might make sense to have widely disparate values for default and maximum lease times on each subnet.
host haagen { hardware ethernet 08:00:2b:4c:59:23; fixed-address 239.252.197.9; filename "/tftpboot/haagen.boot"; }
These options can be specified on a per-subnet basis, and, for BOOTP clients, also on a per-client basis. In the event that a BOOTP client declaration specifies options that are also specified in its subnet declaration, the options specified in the client declaration take precedence. A reasonably complete DHCP configuration might look something like this:
subnet 239.252.197.0 netmask 255.255.255.0 { range 239.252.197.10 239.252.197.250; default-lease-time 600 max-lease-time 7200; option subnet-mask 255.255.255.0; option broadcast-address 239.252.197.255; option routers 239.252.197.1; option domain-name-servers 239.252.197.2, 239.252.197.3; option domain-name "isc.org"; }
A bootp host on that subnet that needs to be in a different domain and use a different name server might be declared as follows:
host haagen { hardware ethernet 08:00:2b:4c:59:23; fixed-address 239.252.197.9; filename "/tftpboot/haagen.boot"; option domain-name-servers 192.5.5.1; option domain-name "vix.com"; }
A more complete description of the dhcpd.conf file syntax is provided in dhcpd.conf(5).
Rather than implementing the underlying OMAPI protocol directly, user programs should use the dhcpctl API or OMAPI itself. Dhcpctl is a wrapper that handles some of the housekeeping chores that OMAPI does not do automatically. Dhcpctl and OMAPI are documented in dhcpctl(3) and omapi(3).
OMAPI exports objects, which can then be examined and modified. The DHCP server exports the following objects: lease, host, failover-state and group. Each object has a number of methods that are provided: lookup, create, and destroy. In addition, it is possible to look at attributes that are stored on objects, and in some cases to modify those attributes.
Leases have the following attributes:
state integer lookup, examine
1 = free 2 = active 3 = expired 4 = released 5 = abandoned 6 = reset 7 = backup 8 = reserved 9 = bootp
ip-address data lookup, examine
dhcp-client-identifier data lookup, examine, update
client-hostname data examine, update
host handle examine
subnet handle examine
pool handle examine
billing-class handle examine
hardware-address data examine, update
hardware-type integer examine, update
ends time examine
tstp time examine
cltt time examine
Hosts have the following attributes:
name data lookup, examine, modify
group handle examine, modify
hardware-address data lookup, examine, modify
hardware-type integer lookup, examine, modify
dhcp-client-identifier data lookup, examine, modify
ip-address data examine, modify
statements data modify
known integer examine, modify
Named groups currently can only be associated with hosts - this allows one set of statements to be efficiently attached to more than one host declaration.
Groups have the following attributes:
name data
statements data
On shutdown the server will also attempt to cleanly shut down all OMAPI connections. If these connections do not go down cleanly after five seconds, they are shut down pre-emptively. It can take as much as 25 seconds from the beginning of the shutdown process to the time that the server actually exits.
To shut the server down, open its control object and set the state attribute to 2.
name data examine
partner-address data examine
local-address data examine
partner-port data examine
local-port data examine
max-outstanding-updates integer examine
mclt integer examine
load-balance-max-secs integer examine
load-balance-hba data examine
local-state integer examine, modify
1 - partner down 2 - normal 3 - communications interrupted 4 - resolution interrupted 5 - potential conflict 6 - recover 7 - recover done 8 - shutdown 9 - paused 10 - startup 11 - recover wait
partner-state integer examine
local-stos integer examine
partner-stos integer examine
hierarchy integer examine
last-packet-sent integer examine
last-timestamp-received integer examine
skew integer examine
max-response-delay integer examine
cur-unacked-updates integer examine
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |