The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

microseq (9)
  • >> microseq (9) ( FreeBSD man: Ядро )

  • BSD mandoc
     

    NAME

    
    
    microseq
    
     - ppbus microsequencer developer's guide
    
     
    

    SYNOPSIS

       #include <sys/types.h>
       #include <dev/ppbus/ppbconf.h>
       #include <dev/ppbus/ppb_msq.h>
     

    DESCRIPTION

    See ppbus(4) for ppbus description and general info about the microsequencer.

    The purpose of this document is to encourage developers to use the microsequencer mechanism in order to have:

    1. a uniform programming model
    2. efficient code

    Before using microsequences, you are encouraged to look at ppc(4) microsequencer implementation and an example of how using it in vpo(4).  

    PPBUS register model

     

    Background

    The parallel port model chosen for ppbus is the PC parallel port model. Thus, any register described later has the same semantic than its counterpart in a PC parallel port. For more info about ISA/ECP programming, get the Microsoft standard referenced as "Extended Capabilities Port Protocol and ISA interface Standard". Registers described later are standard parallel port registers.

    Mask macros are defined in the standard ppbus include files for each valid bit of parallel port registers.  

    Data register

    In compatible or nibble mode, writing to this register will drive data to the parallel port data lines. In any other mode, drivers may be tri-stated by setting the direction bit (PCD) in the control register. Reads to this register return the value on the data lines.  

    Device status register

    This read-only register reflects the inputs on the parallel port interface.

    Bit Ta Name Ta Description
    7 Ta nBUSY Ta inverted version of parallel port Busy signal
    6 Ta nACK Ta version of parallel port nAck signal
    5 Ta PERROR Ta version of parallel port PERROR signal
    4 Ta SELECT Ta version of parallel port Select signal
    3 Ta nFAULT Ta version of parallel port nFault signal

    Others are reserved and return undefined result when read.  

    Device control register

    This register directly controls several output signals as well as enabling some functions.

    Bit Ta Name Ta Description
    5 Ta PCD Ta direction bit in extended modes
    4 Ta IRQENABLE Ta 1 enables an interrupt on the rising edge of nAck
    3 Ta SELECTIN Ta inverted and driven as parallel port nSelectin signal
    2 Ta nINIT Ta driven as parallel port nInit signal
    1 Ta AUTOFEED Ta inverted and driven as parallel port nAutoFd signal
    0 Ta STROBE Ta inverted and driven as parallel port nStrobe signal

     

    MICROINSTRUCTIONS

     

    Description

    Microinstructions are either parallel port accesses, program iterations, submicrosequence or C calls. The parallel port must be considered as the logical model described in ppbus(4).

    Available microinstructions are:

    #define MS_OP_GET       0       /* get <ptr>, <len>                     */
    #define MS_OP_PUT       1       /* put <ptr>, <len>                     */
    #define MS_OP_RFETCH    2       /* rfetch <reg>, <mask>, <ptr>          */
    #define MS_OP_RSET      3       /* rset <reg>, <mask>, <mask>           */
    #define MS_OP_RASSERT   4       /* rassert <reg>, <mask>                */
    #define MS_OP_DELAY     5       /* delay <val>                          */
    #define MS_OP_SET       6       /* set <val>                            */
    #define MS_OP_DBRA      7       /* dbra <offset>                        */
    #define MS_OP_BRSET     8       /* brset <mask>, <offset>               */
    #define MS_OP_BRCLEAR   9       /* brclear <mask>, <offset>             */
    #define MS_OP_RET       10      /* ret <retcode>                        */
    #define MS_OP_C_CALL    11      /* c_call <function>, <parameter>       */
    #define MS_OP_PTR       12      /* ptr <pointer>                        */
    #define MS_OP_ADELAY    13      /* adelay <val>                         */
    #define MS_OP_BRSTAT    14      /* brstat <mask>, <mask>, <offset>      */
    #define MS_OP_SUBRET    15      /* subret <code>                        */
    #define MS_OP_CALL      16      /* call <microsequence>                 */
    #define MS_OP_RASSERT_P 17      /* rassert_p <iter>, <reg>              */
    #define MS_OP_RFETCH_P  18      /* rfetch_p <iter>, <reg>, <mask>       */
    #define MS_OP_TRIG      19      /* trigger <reg>, <len>, <array>        */
    
     

    Execution context

    The execution context of microinstructions is:

    This data is modified by some of the microinstructions, not all.  

    MS_OP_GET and MS_OP_PUT

    are microinstructions used to do either predefined standard IEEE1284-1994 transfers or programmed non-standard io.  

    MS_OP_RFETCH - Register FETCH

    is used to retrieve the current value of a parallel port register, apply a mask and save it in a buffer.

    Parameters:

    1. register
    2. character mask
    3. pointer to the buffer

    Predefined macro: MS_RFETCH(reg,mask,ptr)  

    MS_OP_RSET - Register SET

    is used to assert/clear some bits of a particular parallel port register, two masks are applied.

    Parameters:

    1. register
    2. mask of bits to assert
    3. mask of bits to clear

    Predefined macro: MS_RSET(reg,assert,clear)  

    MS_OP_RASSERT - Register ASSERT

    is used to assert all bits of a particular parallel port register.

    Parameters:

    1. register
    2. byte to assert

    Predefined macro: MS_RASSERT(reg,byte)  

    MS_OP_DELAY - microsecond DELAY

    is used to delay the execution of the microsequence.

    Parameter:

    1. delay in microseconds

    Predefined macro: MS_DELAY(delay)  

    MS_OP_SET - SET internal branch register

    is used to set the value of the internal branch register.

    Parameter:

    1. integer value

    Predefined macro: MS_SET(accum)  

    MS_OP_DBRA - Do BRAnch

    is used to branch if internal branch register decremented by one result value is positive.

    Parameter:

    1. integer offset in the current executed (sub)microsequence. Offset is added to the index of the next microinstruction to execute.

    Predefined macro: MS_DBRA(offset)  

    MS_OP_BRSET - BRanch on SET

    is used to branch if some of the status register bits of the parallel port are set.

    Parameter:

    1. bits of the status register
    2. integer offset in the current executed (sub)microsequence. Offset is added to the index of the next microinstruction to execute.

    Predefined macro: MS_BRSET(mask,offset)  

    MS_OP_BRCLEAR - BRanch on CLEAR

    is used to branch if some of the status register bits of the parallel port are cleared.

    Parameter:

    1. bits of the status register
    2. integer offset in the current executed (sub)microsequence. Offset is added to the index of the next microinstruction to execute.

    Predefined macro: MS_BRCLEAR(mask,offset)  

    MS_OP_RET - RETurn

    is used to return from a microsequence. This instruction is mandatory. This is the only way for the microsequencer to detect the end of the microsequence. The return code is returned in the integer pointed by the (int *) parameter of the ppb_MS_microseq().

    Parameter:

    1. integer return code

    Predefined macro: MS_RET(code)  

    MS_OP_C_CALL - C function CALL

    is used to call C functions from microsequence execution. This may be useful when a non-standard i/o is performed to retrieve a data character from the parallel port.

    Parameter:

    1. the C function to call
    2. the parameter to pass to the function call

    The C function shall be declared as a int(*)(void *p, char *ptr) . The ptr parameter is the current position in the buffer currently scanned.

    Predefined macro: MS_C_CALL(func,param)  

    MS_OP_PTR - initialize internal PTR

    is used to initialize the internal pointer to the currently scanned buffer. This pointer is passed to any C call (see above).

    Parameter:

    1. pointer to the buffer that shall be accessed by xxx_P() microsequence calls. Note that this pointer is automatically incremented during xxx_P() calls

    Predefined macro: MS_PTR(ptr)  

    MS_OP_ADELAY - do an Asynchronous DELAY

    is used to make a tsleep() during microsequence execution. The tsleep is executed at PPBPRI level.

    Parameter:

    1. delay in ms

    Predefined macro: MS_ADELAY(delay)  

    MS_OP_BRSTAT - BRanch on STATe is used to branch on status register state condition.

    Parameter:

    1. mask of asserted bits. Bits that shall be asserted in the status register are set in the mask
    2. mask of cleared bits. Bits that shall be cleared in the status register are set in the mask
    3. integer offset in the current executed (sub)microsequence. Offset is added to the index of the next microinstruction to execute.

    Predefined macro: MS_BRSTAT(asserted_bits,clear_bits,offset)  

    MS_OP_SUBRET - SUBmicrosequence RETurn

    is used to return from the submicrosequence call. This action is mandatory before a RET call. Some microinstructions (PUT, GET) may not be callable within a submicrosequence.

    No parameter.

    Predefined macro: MS_SUBRET()  

    MS_OP_CALL - submicrosequence CALL

    is used to call a submicrosequence. A submicrosequence is a microsequence with a SUBRET call. Parameter:

    1. the submicrosequence to execute

    Predefined macro: MS_CALL(microseq)  

    MS_OP_RASSERT_P - Register ASSERT from internal PTR

    is used to assert a register with data currently pointed by the internal PTR pointer. Parameter:

    1. amount of data to write to the register
    2. register

    Predefined macro: MS_RASSERT_P(iter,reg)  

    MS_OP_RFETCH_P - Register FETCH to internal PTR

    is used to fetch data from a register. Data is stored in the buffer currently pointed by the internal PTR pointer. Parameter:

    1. amount of data to read from the register
    2. register
    3. mask applied to fetched data

    Predefined macro: MS_RFETCH_P(iter,reg,mask)  

    MS_OP_TRIG - TRIG register

    is used to trigger the parallel port. This microinstruction is intended to provide a very efficient control of the parallel port. Triggering a register is writing data, wait a while, write data, wait a while... This allows to write magic sequences to the port. Parameter:

    1. amount of data to read from the register
    2. register
    3. size of the array
    4. array of unsigned chars. Each couple of u_chars define the data to write to the register and the delay in us to wait. The delay is limited to 255 us to simplify and reduce the size of the array.

    Predefined macro: MS_TRIG(reg,len,array)  

    MICROSEQUENCES

     

    C structures

    union ppb_insarg {
         int     i;
         char    c;
         void    *p;
         int     (* f)(void *, char *);
    };
    
    struct ppb_microseq {
         int                     opcode;         /* microins. opcode */
         union ppb_insarg        arg[PPB_MS_MAXARGS];    /* arguments */
    };
    
     

    Using microsequences

    To instantiate a microsequence, just declare an array of ppb_microseq structures and initialize it as needed. You may either use predefined macros or code directly your microinstructions according to the ppb_microseq definition. For example,
         struct ppb_microseq select_microseq[] = {
    
                 /* parameter list
                  */
                 #define SELECT_TARGET    MS_PARAM(0, 1, MS_TYP_INT)
                 #define SELECT_INITIATOR MS_PARAM(3, 1, MS_TYP_INT)
    
                 /* send the select command to the drive */
                 MS_DASS(MS_UNKNOWN),
                 MS_CASS(H_nAUTO | H_nSELIN |  H_INIT | H_STROBE),
                 MS_CASS( H_AUTO | H_nSELIN |  H_INIT | H_STROBE),
                 MS_DASS(MS_UNKNOWN),
                 MS_CASS( H_AUTO | H_nSELIN | H_nINIT | H_STROBE),
    
                 /* now, wait until the drive is ready */
                 MS_SET(VP0_SELTMO),
    /* loop: */     MS_BRSET(H_ACK, 2 /* ready */),
                 MS_DBRA(-2 /* loop */),
    /* error: */    MS_RET(1),
    /* ready: */    MS_RET(0)
         };
    

    Here, some parameters are undefined and must be filled before executing the microsequence. In order to initialize each microsequence, one should use the ppb_MS_init_msq() function like this:

         ppb_MS_init_msq(select_microseq, 2,
                         SELECT_TARGET, 1 << target,
                         SELECT_INITIATOR, 1 << initiator);
    

    and then execute the microsequence.  

    The microsequencer

    The microsequencer is executed either at ppbus or adapter level (see ppbus(4) for info about ppbus system layers). Most of the microsequencer is executed at ppc level to avoid ppbus to adapter function call overhead. But some actions like deciding whereas the transfer is IEEE1284-1994 compliant are executed at ppbus layer.  

    SEE ALSO

    ppbus(4), ppc(4), vpo(4)  

    HISTORY

    The manual page first appeared in Fx 3.0 .  

    AUTHORS

    This manual page was written by An Nicolas Souchu .  

    BUGS

    Only one level of submicrosequences is allowed.

    When triggering the port, maximum delay allowed is 255 us.


     

    Index

    NAME
    SYNOPSIS
    DESCRIPTION
    PPBUS register model
    Background
    Data register
    Device status register
    Device control register
    MICROINSTRUCTIONS
    Description
    Execution context
    MS_OP_GET and MS_OP_PUT
    MS_OP_RFETCH - Register FETCH
    MS_OP_RSET - Register SET
    MS_OP_RASSERT - Register ASSERT
    MS_OP_DELAY - microsecond DELAY
    MS_OP_SET - SET internal branch register
    MS_OP_DBRA - Do BRAnch
    MS_OP_BRSET - BRanch on SET
    MS_OP_BRCLEAR - BRanch on CLEAR
    MS_OP_RET - RETurn
    MS_OP_C_CALL - C function CALL
    MS_OP_PTR - initialize internal PTR
    MS_OP_ADELAY - do an Asynchronous DELAY
    MS_OP_BRSTAT - BRanch on STATe
    MS_OP_SUBRET - SUBmicrosequence RETurn
    MS_OP_CALL - submicrosequence CALL
    MS_OP_RASSERT_P - Register ASSERT from internal PTR
    MS_OP_RFETCH_P - Register FETCH to internal PTR
    MS_OP_TRIG - TRIG register
    MICROSEQUENCES
    C structures
    Using microsequences
    The microsequencer
    SEE ALSO
    HISTORY
    AUTHORS
    BUGS


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру